ardware

Manuá

M16C/6N Group (M16C/6NL, M16C/6NN) Hardware Manual

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / M16C/60 SERIES

Before using this material, please visit our website to verify that this is the most updated document available.

Rev. 1.02 Revision date: Jul. 01, 2005 RenesasTechnology www.renesas.com

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials -

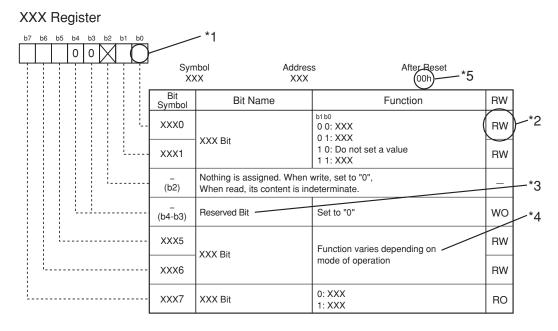
- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

How to Use This Manual


1. Introduction

This hardware manual provides detailed information on the M16C/6N Group (M16C/6NL, M16C/6NN) of microcomputers.

Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

*1

Blank:Set to "0" or "1" according to the application

- 0 : Set to "0"
- 1 : Set to "1"
- X: Nothing is assigned

*2

- RW: Read and write
- RO: Read only
- WO: Write only
- Nothing is assigned

*3

Reserved bit

Reserved bit. Set to specified value.

*4

Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

• Do not set to this value

The operation is not guaranteed when a value is set.

- · Function varies depending on mode of operation
- Bit function varies depending on peripheral function mode. Refer to respective register for each mode.

*5

Follow the text in each manual for binary and hexadecimal notations.

3. M16C Family Documents

The following documents were prepared for the M16C family ⁽¹⁾.

Document	Contents		
Short Sheet	lardware overview		
Data Sheet	ardware overview and electrical characteristics		
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral		
	specifications, electrical characteristics, timing charts)		
Software Manual	Detailed description of assembly instructions and microcomputer		
	performance of each instruction		
Application Note	 Application examples of peripheral functions 		
	Sample programs		
	 Introduction to the basic functions in the M16C family 		
	 Programming method with Assembly and C languages 		
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.		

NOTE:

1. Before using this material , please visit our website to verify that this is the most updated document available.

Table of Contents

SFR Page Reference	B-1
1. Overview	1
1.1 Applications	1
1.2 Performance Outline	2
1.3 Block Diagram	
1.4 Product List	5
1.5 Pin Configuration	6
1.6 Pin Description	8
2. Central Processing Unit (CPU)	
2.1 Data Registers (R0, R1, R2, and R3)	
2.2 Address Registers (A0 and A1)	
2.3 Frame Base Register (FB)	
2.4 Interrupt Table Register (INTB)	
2.5 Program Counter (PC)	11
2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)	
2.7 Static Base Register (SB)	
2.8 Flag Register (FLG)	
2.8.1 Carry Flag (C Flag)	
2.8.2 Debug Flag (D Flag)	
2.8.3 Zero Flag (Z Flag)	
2.8.4 Sign Flag (S Flag)	
2.8.5 Register Bank Select Flag (B Flag)	
2.8.6 Overflow Flag (O Flag)	
2.8.7 Interrupt Enable Flag (I Flag)	
2.8.8 Stack Pointer Select Flag (U Flag)	
2.8.9 Processor Interrupt Priority Level (IPL) 2.8.10 Reserved Area	
3. Memory	
4. Special Function Register (SFR)	
5. Reset	
5.1 Hardware Reset	
5.1.1 Reset on a Stable Supply Voltage	
5.1.2 Power-on Reset	25
5.2 Software Reset	25
5.3 Watchdog Timer Reset	25
5.4 Oscillation Stop Detection Reset	25
6. Processor Mode	
7. Clock Generating Circuit	
7.1 Types of Clock Generating Circuit	
7.1.1 Main Clock	
7.1.2 Sub Clock	
7.1.3 On-chip Oscillator Clock	41
7.1.4 PLL Clock	

	7.2 CPU Clock and Peripheral Function Clock	43
	7.2.1 CPU Clock and BCLK	43
	7.2.2 Peripheral Function Clock	43
	7.3 Clock Output Function	43
	7.4 Power Control	44
	7.4.1 Normal Operation Mode	44
	7.4.2 Wait Mode	46
	7.4.3 Stop Mode	48
	7.5 Oscillation Stop and Re-oscillation Detection Function	53
	7.5.1 Operation When CM27 Bit = 0 (Oscillation Stop Detection Reset)	53
	7.5.2 Operation When CM27 Bit = 1 (Oscillation Stop, Re-oscillation Detection Interrupt)	53
	7.5.3 How to Use Oscillation Stop and Re-oscillation Detection Function	54
8.	Protection	55
9.	Interrupt	56
	9.1 Type of Interrupts	56
	9.2 Software Interrupts	57
	9.2.1 Undefined Instruction Interrupt	57
	9.2.2 Overflow Interrupt	57
	9.2.3 BRK Interrupt	57
	9.2.4 INT Instruction Interrupt	57
	9.3 Hardware Interrupts	58
	9.3.1 Special Interrupts	58
	9.3.2 Peripheral Function Interrupts	58
	9.4 Interrupts and Interrupt Vector	59
	9.4.1 Fixed Vector Tables	59
	9.4.2 Relocatable Vector Tables	59
	9.5 Interrupt Control	61
	9.5.1 Flag	63
	9.5.2 IR Bit	63
	9.5.3 ILVL2 to ILVL0 Bits and IPL	63
	9.5.4 Interrupt Sequence	64
	9.5.5 Interrupt Response Time	65
	9.5.6 Variation of IPL when Interrupt Request is Accepted	65
	9.5.7 Saving Registers	66
	9.5.8 Returning from an Interrupt Routine	67
	9.5.9 Interrupt Priority	67
	9.5.10 Interrupt Priority Resolution Circuit	67
	9.6 INT Interrupt	69
	9.7 NMI Interrupt	73
	9.8 Key Input Interrupt	73
	9.9 CAN0 Wake-up Interrupt	73
	9.10 Address Match Interrupt	74
1(). Watchdog Timer	76
	10.1 Count Source Protective Mode	77

11. DMAC	78
11.1 Transfer Cycle	
11.1.1 Effect of Source and Destination Addresses	83
11.1.2 Effect of Software Wait	83
11.2 DMA Transfer Cycles	85
11.3 DMA Enable	
11.4 DMA Request	
11.5 Channel Priority and DMA Transfer Timing	
12. Timers	88
12.1 Timer A	90
12.1.1 Timer Mode	
12.1.2 Event Counter Mode	95
12.1.3 One-shot Timer Mode	100
12.1.4 Pulse Width Modulation (PWM) Mode	102
12.2 Timer B	105
12.2.1 Timer Mode	108
12.2.2 Event Counter Mode	109
12.2.3 Pulse Period and Pulse Width Measurement Mode	110
13. Three-Phase Motor Control Timer Function	113
14. Serial I/O	124
14.1 UARTi	124
14.1.1 Clock Synchronous Serial I/O Mode	
14.1.2 Clock Asynchronous Serial I/O (UART) Mode	
14.1.3 Special Mode 1 (I ² C Mode)	
14.1.4 Special Mode 2	
14.1.5 Special Mode 3 (IE Mode)	
14.1.6 Special Mode 4 (SIM Mode) (UART2)	
14.2 SI/Oi	171
14.2.1 SI/Oi Operation Timing	175
14.2.2 CLK Polarity Selection	175
14.2.3 Functions for Setting an SOUTi Initial Value	176
15. A/D Converter	177
15.1 Mode Description	181
15.1.1 One-shot Mode	
15.1.2 Repeat Mode	
15.1.3 Single Sweep Mode	
15.1.4 Repeat Sweep Mode 0	
15.1.5 Repeat Sweep Mode 1	189
15.2 Function	191
15.2.1 Resolution Select Function	191
15.2.2 Sample and Hold	191
15.2.3 Extended Analog Input Pins	191
15.2.4 External Operation Amplifier (Op-Amp) Connection Mode	191
15.2.5 Current Consumption Reducing Function	192
15.2.6 Output Impedance of Sensor under A/D Conversion	192
16. D/A Converter	194
17. CRC Calculation	196

18.	CAN Module	198
1	8.1 CAN Module-Related Registers	. 199
	18.1.1 CAN Message Box	. 199
	18.1.2 Acceptance Mask Registers	. 199
	18.1.3 CAN SFR Registers	. 199
1	8.2 CANO Message Box	.200
1	8.3 Acceptance Mask Registers	.202
1	8.4 CAN SFR Registers	.203
1	8.5 Operational Modes	.210
	18.5.1 CAN Reset/Initialization Mode	.210
	18.5.2 CAN Operation Mode	. 211
	18.5.3 CAN Sleep Mode	. 211
	18.5.4 CAN Interface Sleep Mode	. 211
	18.5.5 Bus Off State	.212
1	8.6 Configuration CAN Module System Clock	.213
1	8.7 Bit Timing Configuration	.213
1	8.8 Bit-rate	.214
1	8.9 Acceptance Filtering Function and Masking Function	.215
1	8.10 Acceptance Filter Support Unit (ASU)	.216
1	8.11 Basic CAN Mode	.217
1	8.12 Return from Bus off Function	.218
1	8.13 Time Stamp Counter and Time Stamp Function	.218
1	8.14 Listen-Only Mode	.218
1	8.15 Reception and Transmission	.219
	18.15.1 Reception	.220
	18.15.2 Transmission	.221
1	8.16 CAN Interrupt	. 222
19.	Programmable I/O Ports	223
1	9.1 PDi Register	.224
1	9.2 Pi Register, PC14 Register	.224
1	9.3 PURj Register	.224
1	9.4 PCR Register	.224
20.	Flash Memory Version	235
	20.1 Memory Map	
	20.1.1 Boot Mode	
2	20.2 Functions to Prevent Flash Memory from Rewriting	
	20.2.1 ROM Code Protect Function	
	20.2.2 ID Code Check Function	
2	20.3 CPU Rewrite Mode	.239
	20.3.1 EW0 Mode	.240
	20.3.2 EW1 Mode	.240
	20.3.3 FMR0, FMR1 Registers	
	20.3.4 Precautions on CPU Rewrite Mode	
	20.3.5 Software Commands	
	20.3.6 Data Protect Function	
	20.3.7 Status Register (SRD Register)	
	20.3.8 Full Status Check	

20.4 Standard Serial I/O Mode	256
20.4.1 ID Code Check Function	256
20.4.2 Example of Circuit Application in Standard Serial I/O Mode	260
20.5 Parallel I/O Mode	261
20.5.1 User ROM and Boot ROM Areas	261
20.5.2 ROM Code Protect Function	261
20.6 CAN I/O Mode	262
20.6.1 ID Code Check Function	262
20.6.2 Example of Circuit Application in CAN I/O Mode	265
21. Electrical Characteristics	. 266
22. Usage Precaution	.276
22.1 SFR	276
22.2 External Clock	277
22.3 PLL Frequency Synthesizer	278
22.4 Power Control	279
22.5 Oscillation Stop, Re-oscillation Detection Function	281
22.6 Protection	282
22.7 Interrupt	283
22.7.1 Reading Address 00000h	283
22.7.2 Setting SP	283
22.7.3 NMI Interrupt	283
22.7.4 Changing Interrupt Generate Factor	284
22.7.5 INT Interrupt	284
22.7.6 Rewrite Interrupt Control Register	285
22.7.7 Watchdog Timer Interrupt	285
22.8 DMAC	286
22.8.1 Write to DMAE Bit in DMiCON Register	
22.9 Timers	287
22.9.1 Timer A	287
22.9.2 Timer B	291
22.10 Thee-Phase Motor Control Timer Function	293
22.11 Serial I/O	294
22.11.1 Clock Synchronous Serial I/O Mode	294
22.11.2 Special Modes	
22.11.3 SI/Oi	296
22.12 A/D Converter	297
22.13 CAN Module	299
22.13.1 Reading C0STR Register	299
22.13.2 Performing CAN Configuration	301
22.13.3 Suggestions to Reduce Power Consumption	
22.13.4 CAN Transceiver in Boot Mode	
22.14 Programmable I/O Ports	
22.15 Dedicated Input Pin	
22.16 Electrical Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers	
22.17 Mask ROM Version	307

22.18 Flash Memory Version	
22.18.1 Functions to Prevent Flash Memory from Rewriting	
22.18.2 Stop Mode	
22.18.3 Wait Mode	
22.18.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode	308
22.18.5 Writing Command and Data	
22.18.6 Program Command	
22.18.7 Lock Bit Program Command	
22.18.8 Operation Speed	
22.18.9 Prohibited Instructions	
22.18.10 Interrupt	
22.18.11 How to Access	
22.18.12 Rewriting in User ROM Area	
22.18.13 DMA Transfer	
22.19 Flash Memory Programming Using Boot Program	310
22.19.1 Programming Using Serial I/O Mode	
22.19.2 Programming Using CAN I/O Mode	
22.20 Noise	311
Appendix 1. Package Dimensions	312
Register Index	313

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

SFR Page Reference

0000h 0004h 0040h 0040h <td< th=""><th>Address</th><th>Register</th><th>Symbol</th><th>Page</th><th>Address</th><th>Register</th><th>Symbol</th><th>Page</th></td<>	Address	Register	Symbol	Page	Address	Register	Symbol	Page
00020n 00021 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
0003h Processor Made Register PM1 299 0005h Processor Made Register PM1 299 0005h System Clock Control Register INT3 (K 62 0005h Madress Match Interrupt Enable Register NT5 10047h Timer ES interrupt Control Register SIG (K 62 0005h Matchog Timer Control Register WDC S 77 0047h Matchog Timer Control Register SIG (K 62 0016h Address Match Interrupt Register RMAD 75 0045h 0447h SIG (K 61 0017h Address Match Interrupt Register RMAD 75 0045h 0447h SIG (K 61 0017h Address M								
0004h Processor Mode Register 0 PM0 98 0005h Processor Mode Register 1 PM1 269 0007h System Clock Control Register 1 CM1 344 0009h Advess Match Interrupt Control Register 1 FM1 260 0009h Advess Match Interrupt Control Register 1 FM1 260 0009h Advess Match Interrupt Control Register 1 FM1 260 0000h Cancer Registor 0 PRCR 555 0000h Cancer Registor 0 PRCR 550 0000h Advess Match Interrupt Control Registor 0 PRCR 500 <								
0.0001 Thoosan Mode Neglister 0 Processor Mode Neglister Timer BS Interrupt Control Neglister TBSIC 61 000601 System Clock Control Neglister CMI 32 0044 SICC Interrupt Control Neglister TBSIC 61 000601 System Clock Control Neglister CMI 32 0044 SICC Interrupt Control Neglister TBSIC 61 000601 Address Match Interrupt Control Neglister TBSIC 62 62 000601 Sicc Interrupt Control Neglister TBSIC 62 62 000601 Sicc Interrupt Control Neglister TBSIC 62 62 000601 Sicc Interrupt Control Neglister TBSIC 62 62 64								
00000 FUCURES FUCURES SiCE Interrupt Control Register SiCE Interupt Control Register								
0.00en System Uolox Control Register 1 CM0 33 00007 System Uolox Control Register 1 CM1 34 0008h Address Match Interrupt Cable Register 1 PRCR 55 0008h Portect Register 1 PRCR 55 0008h SIO4 Interrupt Control Register 1 TBIC 66 0008h SIO4 Interrupt Control Register 1 TBIC 66 0008h SIO4 Interrupt Control Register 1 TBIC 66 0007h Watchdog Timer Start Register WDTS 77 004h MATA Interrupt Control Register 1 MAIA 0018h Didata List Register WDTS 77 004h MAIA 1404cm Startupt Control Register 1 MAIA 0018h Address Match Interrupt Register 1 RMAD 75 004h MAIA 1784C 61 0018h Address Match Interrupt Register 1 RMAD 75 004h MAIA 1784C 61 0018h Address Match Interrupt Register 1 RMAD 75 004h MAIA 1784C 61					0045h	SI/O5 Interrupt Control Begister		
0007h Experience EVAIL 344 0008h LBRT Bas Calisan Detaion inserga Control Register TBRC 106 61 0008h Address Match Interrupt Enable Register PRC P 55 0008h Control Register PRC P 55 0008h Control Register SIGC 62 0006h Matchdog Timer Start Register WD S 77 0006h Watchdog Timer Control Register DM C 61 0018h Address Match Interrupt Control Register DM C 61 0018h Address Match Interrupt Control Register DM C 61 0018h Address Match Interrupt Register 1 RMAD 1 75 004h DM C 61 0018h Address Match Interrupt Register 1 RMAD 1 75 004h DM C Control Register DM C 61 0018h Madress Match Interrupt Register 1 RMAD 1 75 004h LM C Control Register DM C 61 0018h Madress Match Interrupt Register 1 RMAD 1 75 004h LM							TB4IC	
0009h Address Match Interrupt Enable Register AIER 75 0009h Address Match Interrupt Enable Register PRCR 55 00009h Coloration Stop Detection Register PRCR 55 00009h Coloration Stop Detection Register PRCR 55 00009h Coloration Stop Detection Register PRCR 55 00009h Matchdog Timer Start Register WDTS 77 00010h Watchdog Timer Control Register NTIG 62 00011h Address Match Interrupt Register RMADD 75 0011h Address Match Interrupt Register RMADD 75 0015h Address Match Interrupt Control Register ROIC 61 <td></td> <td>System Clock Control Register 1</td> <td>CM1</td> <td>34</td> <td>0046h</td> <td></td> <td></td> <td></td>		System Clock Control Register 1	CM1	34	0046h			
0009h Address Match Interrupt Enable Register PRCR 55 0009h Protect Register PRCR 55 0009h Collation Stop Detection Register CM2 35 0000h Collation Stop Detection Register CM2 35 0000h Collation Stop Detection Register CM2 35 0000h Matchdog Timer Control Register WDT 77 0000h Matchdog Timer Control Register WDT 77 0001h Address Match Interrupt Register RMAD0 75 0011h Address Match Interrupt Register RMAD1 75 0011h Address Match Interrupt Register MMAD 75 0011h Address Match Interrupt Register RMAD1 75 0014h Address Match Interrupt Register RMAD1 75 0014h Address Match Interrupt Register RMAD1 75 0014h Address Match Interrupt Control Register RMC 76 0014h Address Match Interrupt Control Register RMC 76 0014h </td <td></td> <td></td> <td></td> <td></td> <td>0047h</td> <td></td> <td></td> <td></td>					0047h			
0008h	0009h				0047h	UART0 Bus Collision Detection Interrupt Control Register	U0BCNIC	
0000ml CM2 1<		Protect Register	PRCR	55	0048h	SI/O4 Interrupt Control Register		
0000h 000491 INT4 interrupt Control Register INT4/C 62 0004bit Watchdog Timer Start Register WDC 77 0004bit Watchdog Timer Start Register WDC 77 004bit Watchdog Timer Start Register DMAI 004bit DMAI DMAI Control Register DMAIC 61 004bit Matchdog Timer Start Register MDC 61 004bit DMAI Control Register DMAIC 61 004bit Address Match Interrupt Register MAI 75 004bit DMAI Control Register ADIC 61 004bit DMAI Data Timer Start Register ADIC 61 004bit DMAI Control Register ADIC 61 004bit DMAI DMAI Control Register ADIC 61 004bit DMAI DMAI Control Register ADIC 61 005bit DMAI Control Register ADIC 61 005bit DMAI Control Register ADIC 61 005bit DMAI <td></td> <td></td> <td></td> <td></td> <td>004011</td> <td></td> <td></td> <td></td>					004011			
000Dh INI a interrupt Control Register WDTS 77 000Eh Watchdog Timer Control Register WDC 77 000Eh Watchdog Timer Control Register DMAI		Oscillation Stop Detection Register	CM2	35	0049h		S3IC	
00061F Watchoog Timer Control Register DMUC 71 0010h Address Match Interrupt Register 0 WMC 75 0011h Address Match Interrupt Register 0 RMAD0 75 0013h Address Match Interrupt Register 1 RMAD0 61 0014h Address Match Interrupt Register 1 RMAD0 75 0015h Address Match Interrupt Register 2 RMAD0 75 0015h Address Match Interrupt Register 2 RMAD0 75 0015h Address Match Interrupt Register 2 RMAD0 75 0015h Address Match Interrupt Control Register 3 RTIC 61 005h Timer AD Interrupt Control Register 1 RTIC 61 005h Timer AD Interrupt Control Register 1 RTAIC 61 005h	000Dh					INT4 Interrupt Control Register		
Odd no Vide Control Vide Control Vide Control Vide Control Differ Differ<	000Eh		WDTS	77				
00111n Address Match Interrupt Register 0 RMAD0 75 0013h 0013h 004Dh CAN0 Error Interrupt Control Register C01ERIC 61 0013h 0 0 Kupic 61 61 0013h 0 0 Kupic 61 62 61 0013h 0 Address Match Interrupt Register 1 RMAD0 75 004Eh AD Conversion Interrupt Control Register 61 60 61 62 61 62 61 62 61 63 61 63 63 63 64 64 63 64 65 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66	000Fh	Watchdog Timer Control Register	WDC	77			DMUIC	
0011n Address Match Interrupt Register 0 PMAD0 75 0011n 0013h 0014h	0010h							
0012h 0042h (W)PIC 61 0013h 0044h (W)PIC 61 0013h 0045h (Adress Match Interrupt Register 1 (MAD 1 75 0015h (Adress Match Interrupt Register 1 (MAD 1 75 (MAD 1)	0011h	Address Match Interrupt Register 0	RMAD0	75				
0013h	0012h				004Eh			
0014h Address Match Interrupt Register 1 RMAD1 75 0015h Address Match Interrupt Control Register 2 SRIC 61 0015h 047 Fassion 1 61 0015h 11047 11047 62 0025h 11040 11047 11047					004Fh	UART2 Transmit Interrupt Control Register	S2TIC	
0015h Address Match Interrupt Register 1 RMAD1 75 0016h 0017h 0017h 0017h 0017h 0018h 0017h 0017h 0017h 0017h 0017h 0017h 0018h 0017h 0017h <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>S2RIC</td> <td></td>							S2RIC	
0016h 005h UARTO Receive Interrupt Control Register SORC 61 0017h 0018h 005h UARTO Receive Interrupt Control Register STIC 61 0018h 005h UARTO Receive Interrupt Control Register STIC 61 0018h 005h UARTO Receive Interrupt Control Register STIC 61 0018h 005h UARTO Receive Interrupt Control Register STIC 61 0018h 005h URATO Receive Interrupt Control Register STIC 61 005h URATO Receive Interrupt Control Register TAIC 61 005h Timer AD Interrupt Control Register TAIC 62 005h Timer AD Interrupt Control Register TAIC 62 005h Timer AD Interrupt Control Register TAIC 61 0027h 005h Timer AD Interrupt Control Register TAIC 61 0028h DMA0 Destination Pointer DAR0 82 005h Timer AD Interrupt Control Register TAIC 62 0027h DMA0 Destination Pointer DAR0 82 005h Timer AD Interrupt Control Register TIC 62 0028h DMA0 Transfer Counter		Address Match Interrupt Register 1	RMAD1	75			SOTIC	
0018h 0054h 0054h 0054h 0054h 0055h Timer AD Interrupt Control Register TADIC 61 0018h 0018h 0055h Timer AD Interrupt Control Register TADIC 61 0018h 0055h Timer AD Interrupt Control Register TADIC 62 0017h 0055h Timer AD Interrupt Control Register TADIC 62 0017h 0055h Timer AD Interrupt Control Register TADIC 62 0017h 0057h Timer AD Interrupt Control Register TADIC 62 0017h 0057h Timer AD Interrupt Control Register TADIC 62 0027h 0058h Timer AD Interrupt Control Register TADIC 62 0028h DMA0 Source Pointer SAR0 82 0056h Timer AD Interrupt Control Register TADIC 62 0028h DMA0 Destination Pointer DAR0 82 0056h 11114rc destination Pointer CANO Message Box 0: Identifier / DLC 0056h 0028h DMA0 Transfer Counter DAR1 82 0066h	0016h						SORIC	
0018h 0054h 0054h 0055h Timer AD Interrupt Control Register TADIC 61 0018h 0055h Timer AD Interrupt Control Register TADIC 61 0018h 0055h Timer AD Interrupt Control Register TADIC 61 0016h PLCo 38 1005h Timer AD Interrupt Control Register TADIC 62 0017h Timer AD Interrupt Control Register TADIC 62 62 0017h Timer AD Interrupt Control Register TADIC 62 0017h Timer AD Interrupt Control Register TADIC 62 0017h Timer AD Interrupt Control Register TADIC 62 0021h DMAO Source Pointer SAR0 82 0055h Timer BD Interrupt Control Register TBDIC 62 0022h DMAO Destination Pointer DAR0 82 0056h 1104 62 0022h DMAO Transfer Counter TCR0 82 0056h 1104 62 0022h DMAO Transfer Counter DAR1 62	0017h				0053h	UART1 Transmit Interrupt Control Register	S1TIC	
0019h 005h Timer A0 Interrupt Control Register TAGIC 61 001Ah 005h Timer A1 Interrupt Control Register TAGIC 61 001Bh 005h Timer A1 Interrupt Control Register TAGIC 62 001Dh 005h Timer A1 Interrupt Control Register TAGIC 62 001Fh 005h Timer A1 Interrupt Control Register TAGIC 62 001Fh 005h Timer A1 Interrupt Control Register TAGIC 62 002h 001Fh 005h Timer A1 Interrupt Control Register TAGIC 62 002h DMA0 Source Pointer SAR0 82 005h Timer B1 Interrupt Control Register TBIC 62 0022h DMA0 Destination Pointer DAR0 82 005h Timer B2 Interrupt Control Register INT1IC 62 0022h DMA0 Transfer Counter TCR0 82 005h Timer B2 Interrupt Control Register INT1IC 62 0022h DMA0 Control Register DMOCON 81 0065h 0065h 0065h								
0011Ail PLC0 33 0011Bh PLC0 33 0011Dh PLC0 33 0011Dh PLC0 33 0011Dh PLC0 33 0011Bh PLC0 33 0011Dh PLC0 33 0021h PLC0 33 0021h PLC0 33 0022h DMA0 Destination Pointer DAR0 82 0022h DMA0 Transfer Counter TCR0 82 0022h DMA0 Control Register INT2IC 62 0022h DMA0 Control Register DMCON 81 0022h DMA1 Source Pointer DAR1 82 0033h CAN0 Message Box 0: Da								
00161h PLL Control Register 0 PLC0 38 0016h PLC Control Register 1 NT71C 62 0016h Processor Mode Register 2 PM2 37 0016h Processor Mode Register 2 PM2 37 0021h DMA0 Source Pointer SAR0 82 0022h DMA0 Source Pointer SAR0 82 0022h DMA0 Source Pointer DAR0 82 0022h DMA0 Destination Pointer DAR0 82 0022h DMA0 Control Register DM1CON 81 0022h DMA0 Transfer Counter TCR0 82 0022h DMA1 Source Pointer SAR1 62 0033h DOGEh CAN0 Message Box 0: Identifier / DLC 0033h DOGEh CAN0 M	001Ah				0056h			
001Ch PLC Control Register 0 PLC0 38 001Dh Processor Mode Register 0 PLC0 38 001Dh Processor Mode Register 0 PLC0 38 001Eh Processor Mode Register 2 PM2 37 0021h Drocessor Mode Register 2 PM2 37 0022h DMA0 Source Pointer SAR0 82 0022h DMA0 Destination Pointer DAR0 82 0022h DMA0 Destination Pointer DAR0 82 0022h DMA0 Transfer Counter TCR0 82 0022h DMA0 Transfer Counter TCR0 82 0022h DMA0 Control Register INT2 Interrupt Control Register INT0 INT0 INT0 INT0 Register 0022h DMA0 Control Register DMOCON 81 0022h DMA1 Source Pointer SAR1 82 <td>001Bh</td> <td></td> <td></td> <td></td> <td>0057h</td> <td></td> <td>I A2IC</td> <td></td>	001Bh				0057h		I A2IC	
001Dh 0005h INTE Interrupt Control Register INTEG Co		PLL Control Register 0	PLC0	38				
001Eh Processor Mode Register 2 PM2 37 001Fh 002h 0059h Timer Ad Interrupt Control Register TAIC 61 0020h 002h 0059h Timer Ad Interrupt Control Register TBIC 62 0022h 0023h 0055h Timer Ad Interrupt Control Register TBIC 62 0022h 0025h DMA0 Destination Pointer DAR0 82 0055h Interrupt Control Register TBIC 62 0025h DMA0 Destination Pointer DAR0 82 0055h INT1 Interrupt Control Register INT1C 62 0025h DMA0 Transfer Counter TCR0 82 0056h INT2 Interrupt Control Register INT1C 62 0028h DMA0 Control Register DMOCON 81 0066h 007h 0066h 007h 007h 007h 007h<					0058h			
001Fh 0 0 0 0 0 61 0026h 0036h Timer B0 Interrupt Control Register 58(C 61 0021h 00400 Source Pointer SAR0 82 005h 1 SUG6 Interrupt Control Register SG(C 61 0023h 0 0 1 <td></td> <td>Processor Mode Register 2</td> <td>PM2</td> <td>37</td> <td>0059h</td> <td>Timer A4 Interrupt Control Register</td> <td></td> <td></td>		Processor Mode Register 2	PM2	37	0059h	Timer A4 Interrupt Control Register		
0020h 0021h 0021h DMA0 Source Pointer SAR0 82 0021h 0023h SAR0 82 0024h 0023h Image: SaR0 82 0024h 0023h Image: SaR0 82 0024h 0024h Image: SaR0 82 0024h Image: SaR0 82 0024h Image: SaR0 82 0025h DMA0 Destination Pointer DAR0 82 0026h Image: SaR0 82 0027h Image: SaR0 82 0028h Image: SaR1 82 0028h Image: SaR1 82 0031h Image: SaR1 82 0033h Image: SaR1 82 0033h								
OO22h OMA0 Source Pointer SAR0 82 O022h OO23h INT8 Interrupt Control Register TB1C 62 O024h INT8 Interrupt Control Register INT8C 62 O025h DMA0 Destination Pointer DAR0 82 O027h INT8 Interrupt Control Register INT0C 62 O027h INT1 Interrupt Control Register INT1C 62 O027h INT2 Interrupt Control Register INT1C 62 O027h INT1 Interrupt Control Register INT1C 62 O027h INT1 Interrupt Control Register INT1C 62 O027h Interrupt Control R					005Ah		S6IC	
OO22h OO23h OO32h OO33h OO32h OO33h OO33h <th< td=""><td></td><td>DMA0 Source Pointer</td><td>SAB0</td><td>82</td><td>OOEDh</td><td></td><td>TB1IC</td><td></td></th<>		DMA0 Source Pointer	SAB0	82	OOEDh		TB1IC	
0023h 0050h Imme Ze Interrupt Control Register TB2/C 61 0024h 0050h INT0 Interrupt Control Register INT0/C 62 0027h 0050h INT1 Interrupt Control Register INT1/C 62 0027h 0050h INT1 Interrupt Control Register INT1/C 62 0027h 0050h INT2 Interrupt Control Register INT1/C 62 0027h 0050h INT2 Interrupt Control Register INT1/C 62 0028h 0020h 0066h 0068h 0068h 0068h 0020h 0020h 0020h 0068h 0068h 0068h 0068h 0022h 0027h 0028h 0068h 0071h 0068h 0071h 0071h 0072h 0071h 0072h 0071h 0072h 0072h			0,		00560		INT8IC	
0024h 0025h DMA0 Destination Pointer DAR0 82 0027h 0027h 0055h INT1 Interrupt Control Register INT1IC 62 0027h 0028h DMA0 Transfer Counter TCR0 82 0065th INT2 Interrupt Control Register INT2IC 62 0028h 002Ah 0065th INT2 Interrupt Control Register INT2IC 62 0028h 002Ah 0065th INT2 Interrupt Control Register INT2IC 62 0028h 002Ah 0066h 0071h 0066h 0071h 0071h 0072h 0071h 0071h 0072h 0071h 0072h 0073h 0077h 0077h <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TB2IC</td> <td></td>							TB2IC	
O025h DMA0 Destination Pointer DAR0 82 O005ch INIT Interrupt Control Hegister INIT Interrupt Control Hegister INITIC 62 0026h 0027h 005ch 005ch 1NIT Interrupt Control Hegister INITIC 62 0028h 0028h 005ch 0062h 0062h 0062h 0062h 0062h 0062h 0062h 0062h 0068h 007h							INTOIC	
0026h 0027h 0060h 0070h 0070h 0070h 0070h 0070h 0070h 0070h 0070h <td< td=""><td></td><td>DMA0 Destination Pointer</td><td>DARO</td><td>82</td><td></td><td></td><td>INT1IC</td><td></td></td<>		DMA0 Destination Pointer	DARO	82			INT1IC	
0027h 00061h 0028h DMA0 Transfer Counter TCR0 82 0028h 0061h 0062h 0028h 0064h 0064h 0028h 0064h 0066h 0028h 0067h 0068h 0028h 0028h 0068h 0028h 0068h 0068h 0038h 0068h 0068h 0036h 0068h 0068h 0037h 0038h 0071h 0038h 0071h 0078h 0038h 0071h 0078h 0037h 0078h 0078h 0038h 0077h 0078h 0037h 0078h 0078h 0037h 0078h 0078h 0038h 0077h 0078h 0037h 0078h 0078h <tr< td=""><td></td><td></td><td>Dritto</td><td>02</td><td></td><td>INT2 Interrupt Control Register</td><td>INT2IC</td><td>62</td></tr<>			Dritto	02		INT2 Interrupt Control Register	INT2IC	62
0028h 0029h 002Ah DMA0 Transfer Counter TCR0 82 002Ah Image: Construct Structure CAN0 Message Box 0: Identifier / DLC 002Bh Image: Construct Structure DM0CON 81 002Ch DMA0 Control Register DM0CON 81 002Eh Image: Constructure DM0CON 81 002Eh Image: Constructure Constructure Constructure 0030h Image: Constructure Constructure Constructure 0031h DMA1 Source Pointer CAN1 CAN0 Message Box 0: Data Field 0032h Image: Constructure CAN1 CAN0 Message Box 0: Time Stamp 200 0033h Image: Constructure CAN1 82 006Eh CAN0 Message Box 0: Time Stamp 201 0035h Image: Constructure TCR1 82 0071h 0071h 0072h 0072h 0038h Image: Constructure TCR1 82 0073h 0072h 0073h 0074h 0074h 0074h 0074h 0074h 0076h 0074h 0076h								
OU29h DMAU fransfer Counter TCR0 82 CANO Message Box 0: Identifier / DLC 002Ah								
002Ah 006Ah 002Bh 006Ah 002Ch DMA0 Control Register DM0CON 002Dh 0066h 002Eh 0066h 002Fh 0066h 0031h 0066h 0032h 0066h 0032h 0066h 0032h 0066h 0032h 0066h 0033h 0066h 0034h 0066h 0037h 0066h 0037h 0067h 0038h 0077h 0038h 0077h 0038h 0074h 0032h 0077h 0038h 0077h 0037h 0078h 0077h 0078h 0077h 0078h 0077h 0078h 0077h 0078h		DMA0 Transfer Counter	TCR0	82		CAN0 Message Box 0: Identifier / DLC		
002Bh 0065h 0066h 0066h 0066h 0066h 0060h 006h 007h 006h 007h						-		
002Ch DMA0 Control Register DM0CON 81 0066h 0067h 0068h 0077h 0077h 0078h 0078h <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Ouzbe Dimension register Dimension register One of the state		DMA0 Control Register		81				
002Eh 0068h 0069h 0069h 0069h 0069h 0069h 0069h 0069h 0069h 0060h 0070h 0078h 0078h 0077h 0077h 0077h 0077h 0077h 0078h 0078h <td< td=""><td></td><td></td><td>DIVIDUOUIN</td><td>01</td><td></td><td></td><td></td><td></td></td<>			DIVIDUOUIN	01				
002Fh 0030h 0069h CAN0 Message Box 0: Data Field 200 0030h 0031h DMA1 Source Pointer SAR1 82 0060h 0071h 0071h 0071h 0071h 0072h 0071h 0072h 0073h 0073h 0072h 0073h 0073h 0072h 0073h								
0030h 0031h 0032h DMA1 Source Pointer SAR1 82 006Ah 006Bh 006Bh 006Ch 006Ch CAN0 Message Box 0: Time Stamp 200 0033h 0033h 0035h 0036h DMA1 Destination Pointer DAR1 82 0070h 0070h 0070h 0070h CAN0 Message Box 0: Time Stamp 200 201 0038h 0038h 0038h DMA1 Transfer Counter TCR1 82 0073h 0073h CAN0 Message Box 1: Identifier / DLC 201 0038h 0038h 0077h 003Ch 0076h 0077h 0077h 0077h CAN0 Message Box 1: Identifier / DLC 201 0077h 003Ch 0077h 003Ch 0076h 0077h CAN0 Message Box 1: Identifier / DLC 201 0077h 003Ch 0076h 0077h 0077h CAN0 Message Box 1: Identifier / DLC 201 0077h 003Ch 0076h 0077h CAN0 Message Box 1: Identifier / DLC 201 0078h 0077h 0076h 0077h 0078h 0078h 003Fh 007Ah 007Ah 007Ah 007Ah 007Ah 003Fh 007Ah 007Ah 007Ah 007Ah 007Ah						CANO Magagage Rox 0: Data Field		
0031h 0032h DMA1 Source Pointer SAR1 82 0036h 006Ch 006Ch 006Ch 006Ch CAN0 Message Box 0: Time Stamp 200 0033h 0						CANU Message Box U. Data Fleid		
0032h 0060000000000000000000000000000000000		DMA1 Source Pointor	SAP1	20				
0033h 006Eh 006Eh 006Eh 000000000000000000000000000000000000			SANI	02				
0034h 0035h 0036h DMA1 Destination Pointer DAR1 82 006Fh 0070h 0070h 0071h 0071h 0072h 0073h CAN0 Message Box 0: Time Stamp 200 201 0036h 0030h DMA1 Destination Pointer DAR1 82 006Fh 0071h 0072h CAN0 Message Box 0: Time Stamp 200 201 0038h 0039h DMA1 Transfer Counter TCR1 82 0074h 0074h 0075h CAN0 Message Box 1: Identifier / DLC 201 201 0030h 0030h 0074h 0077h 0077h 0077h 0077h 0077h 0078h				+ - 1				
0035h DMA1 Destination Pointer DAR1 82 0006/11 0007/11				+		CAN0 Message Box 0: Time Stamp		200
OOS Drive Drive OC OOT OOT<		DMA1 Destinction Delater						
0037h 0038h 0072h 0038h DMA1 Transfer Counter TCR1 82 003Ah 0074h 0074h 003Ah 0075h 0076h 003Bh 0076h 0077h 003Ch DMA1 Control Register DM1CON 81 003Eh 003Fh 0078h 003Fh 0078h 0078h 003Fh 0078h 0078h 003Fh 0076h 0078h 003Fh 0076h 0078h 003Fh 0076h 0078h 007Fh 0078h 0078h 007Fh 0078h 0078h 007Fh 0077h 0078h 007Fh 007Ch 007Ch		Divia i Destination Pointer	DARI	02				201
0038h 0039h 0039h 0039h 0030h DMA1 Transfer Counter TCR1 82 0073h 0074h 0075h 0073h 0074h 0038h 0038h Image: Control Register 0038h Image: Control Register 00378h Image: Control Register 00378h Image: Control Register 00378h Image: Control Register 00378h Image: Control Register <t< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td></t<>				+				
OUSDATI 0039h DMA1 Transfer Counter TCR1 82 0074h 0039h 003Ah 0075h 0076h 003Bh 0076h 0077h 003Ch DMA1 Control Register DM1CON 81 003Bh 0078h 0078h 003Bh 0078h 0078h 003Bh 0078h 0078h 003Fh 007Ch 0078h						CAN0 Message Box 1: Identifier / DLC		
0039h 0073h 003Ah 0075h 003Bh 0076h 003Ch DMA1 Control Register DM1CON 81 0078h 0078h 003Bh 0078h 003Bh 0078h 003Bh 0078h 003Bh 0078h 003Bh 0078h 0079h 0078h 0078h 0078h 0078h 0078h 0078h 0078h 0078h 0078h		DMA1 Transfer Counter	TCR1	82				
003An 0076h 003Bh 0077h 003Ch DMA1 Control Register DM1CON 003Dh 0078h 003Eh 0078h 003Fh 0078h 003Fh 0076h 0078h 0078h				+	0075h			
003Bh 003Bh 003Ch DMA1 Control Register 003Dh 0077h 003Bh 0079h 003Eh 0079h 003Fh 007Bh 003Fh 007Ch				 				1
003Ch DMA1 Control Register DM1CON 81 0078h 003Dh 003Eh 0079h 0079h 003Fh 007Bh 007Bh 003Fh 007Ch						1		
003Dh 0079h 003Eh 0079h 003Fh 007Bh CAN0 Message Box 1: Data Field 007Bh 007Ch		DMA1 Control Register	DM1CON	81		1		
003Eh 007Ah CANO Message Box 1: Data Field 003Fh 007Bh Door Bh 007Ch					0079h	CANO Magagara Davi 1: Data Field		
The blank areas are reserved 007Ch					007Ah	° .		
	003Fh							
	The blan	k areas are reserved.			007Ch			

007Dh 007Eh

007Fh

CAN0 Message Box 1: Time Stamp

Address	Register	Symbol	Page
0080h			
0081h			
0082h			
0083h	CAN0 Message Box 2: Identifier / DLC		
0084h			
0085h			
0086h			
0087h			
0088h			
0089h			
008Ah	CAN0 Message Box 2: Data Field		
008Bh			
008Ch			
008Dh			
008Eh			
008Fh	CAN0 Message Box 2: Time Stamp		
0090h			
0091h			
0091h			
0092h	CAN0 Message Box 3: Identifier / DLC		
0093h			
009411 0095h			
0095h			
0090h			
0097h			
0099h			
009Ah	CAN0 Message Box 3: Data Field		
009Bh			
009Ch			
009Dh			
009Eh			
009Fh	CAN0 Message Box 3: Time Stamp		200
00A0h			201
00A1h			
00A2h			
00A3h	CAN0 Message Box 4: Identifier / DLC		
00A4h			
00A5h			
00A6h			
00A7h			
00A8h			
00A9h			
00AAh	CAN0 Message Box 4: Data Field		
00ABh			
00ACh			
00ADh			
00AEh			
00AFh	CAN0 Message Box 4: Time Stamp		
00B0h			
00B1h			
00B2h	OANIO Maagana Day 5: Heartford (DLO		
00B3h	CAN0 Message Box 5: Identifier / DLC		
00B4h			
00B5h			
00B6h			
00B7h			
00B8h			
00B9h	CANO Moccore Poy 5: Data Field		
00BAh	CAN0 Message Box 5: Data Field		
00BBh			
00BCh			
00BDh			
00BEh	CAN0 Message Box 5: Time Stamp		
00BFh	CANO MESSAGE DOX 5. TIME Stamp		

Address	Register	Symbol	Page
00C0h			
00C1h			
00C2h	CAN0 Message Box 6: Identifier / DLC		
00C3h	CANO Message Box 6. Identilier / DLC		
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h	CANO Massaga Bay 6: Data Field		
00CAh	CAN0 Message Box 6: Data Field		
00CBh			
00CCh			
00CDh			
00CEh	CAN0 Message Box 6: Time Stamp		
00CFh	CANO Message Dox 0. Time Stamp		
00D0h			
00D1h			
00D2h	CAN0 Message Box 7: Identifier / DLC		
00D3h	e, are mossage box 7. Identifier / DEO		
00D4h			
00D5h			
00D6h			
00D7h			
00D8h			
00D9h	CAN0 Message Box 7: Data Field		
00DAh	er i te meesage Bex 7. Bala Field		
00DBh			
00DCh			
00DDh		-	
00DEh	CAN0 Message Box 7: Time Stamp		000
00DFh			200
00E0h			201
00E1h			
00E2h	CAN0 Message Box 8: Identifier / DLC		
00E3h	5		
00E4h			
00E5h			
00E6h 00E7h			
00E711 00E8h			
00E81			
00E3h	CAN0 Message Box 8: Data Field		
00EAn			
00EBh			
00EDh			
00EEh			
00EFh	CAN0 Message Box 8: Time Stamp		
00F0h			
00F1h			
00F2h			
00F3h	CAN0 Message Box 9: Identifier / DLC		
00F4h			
00F5h			
00F6h			
00F7h			
00F8h			
00F9h			
00FAh	CAN0 Message Box 9: Data Field		
00FBh			
00FCh			
00FDh			
00FEh	CANO Magagaga Roy Or Time Stores		
00FFh	CAN0 Message Box 9: Time Stamp		

Address	Register	Symbol	Page
0100h	Ŭ		Ŭ
0101h			
0102h	CAN0 Message Box 10: Identifier / DLC		
0103h	je na se		
0104h			
0105h 0106h			
0100h			
0108h			
0109h	OANIO Marca and David Ale Data Field		
010Ah	CAN0 Message Box 10: Data Field		
010Bh			
010Ch			
010Dh			
010Eh	CAN0 Message Box 10: Time Stamp		
010Fh 0110h			
0111h			
0112h			
0113h	CAN0 Message Box 11: Identifier / DLC		
0114h			
0115h			
0116h			
0117h			
0118h 0119h			
0119h	CAN0 Message Box 11: Data Field		
011Bh			
011Ch			
011Dh			
011Eh	CAN0 Message Box 11: Time Stamp		
011Fh	OANO Message Box 11. Time Otamp		200
0120h			201
0121h 0122h			
0122h	CAN0 Message Box 12: Identifier / DLC		
0124h			
0125h			
0126h			
0127h			
0128h			
0129h	CAN0 Message Box 12: Data Field		
012Ah 012Bh			
012Dh			
012Dh			
012Eh	CANO Monago Poy 10: Time Stome		
012Fh	CAN0 Message Box 12: Time Stamp		
0130h			
0131h			
0132h 0133h	CAN0 Message Box 13: Identifier / DLC		
0133h			
0135h			
0136h			
0137h			
0138h			
0139h	CAN0 Message Box 13: Data Field		
013Ah	y -		
013Bh 013Ch			
013Dh			
013Eh			
013Fh	CAN0 Message Box 13: Time Stamp		
T I II	k areas are reserved		

Address	Register	Symbol	Page
0140h	-		-
0141h			
0142h	CAN0 Message Box 14: Identifier /DLC		
0143h	OANO Message Dox 14. Identilier /DEO		
0144h			
0145h			
0146h			
0147h			
0148h			
0149h	CAN0 Message Box 14: Data Field		
014Ah	of the message box 14. Data Field		
014Bh			
014Ch			
014Dh			
014Eh	CAN0 Message Box 14: Time Stamp		
014Fh			200
0150h			201
0151h			
0152h	CAN0 Message Box 15: Identifier /DLC		
0153h	-		
0154h 0155h			
0155h			-
0156h			
0157h 0158h			
0158h			
015Ah	CAN0 Message Box 15: Data Field		
015Bh			
015Ch			
015Dh			
015Eh			
015Fh	CAN0 Message Box 15: Time Stamp		
0160h			
0161h			
0162h			
0163h	CAN0 Global Mask Register	COGMR	202
0164h			
0165h			
0166h			
0167h			
0168h	CANOL and Made A Deviator		000
0169h	CAN0 Local Mask A Register	COLMAR	202
016Ah			
016Bh			
016Ch			
016Dh			
016Eh	CAN0 Local Mask B Register	COLMBR	202
016Fh	CANO LOCALIVIASK D REGISLEI	JULINDI	-02
0170h			
0171h			
0172h			
0173h			
0174h			
0175h			
0176h			
0177h 0178h			
0178h			
01790 017Ah			
017An 017Bh			
017Ch			
017Dh			
017Eh			
017Eh			

Address R	egister	Symbol	Page	Address	Register	Symbol	Page
0180h	-	, í			Timer B3, B4, B5 Count Start Flag	TBSR	107
0181h				01C1h			
0182h				01C2h	Time on Ad. d. De seletare	TA11	118
0183h				01C3h	Timer A1-1 Register	IAII	110
0184h				01C4h	Timor AQ 1 Desistor	TA21	118
0185h				01C5h	Timer A2-1 Register	IAZI	110
0186h				01C6h	Timor A4 1 Deviator	TA41	118
0187h				01C7h	Timer A4-1 Register	1A41	110
0188h				01C8h	Three-Phase PWM Control Register 0	INVC0	115
0189h					Three-Phase PWM Control Register 1	INVC1	116
018Ah					Three-Phase Output Buffer Register 0	IDB0	117
018Bh				01CBh	Three-Phase Output Buffer Register 1	IDB1	117
018Ch				01CCh	Dead Time Timer	DTT	117
018Dh					Timer B2 Interrupt Occurrence Frequency Set Counter	ICTB2	119
018Eh				01CEh			
018Fh				01CFh	Interrupt Cause Select Register 2	IFSR2	72
0190h				01D0h		TDO	110
0191h				01D1h	Timer B3 Register	TB3	116
0192h				01D2h	Timer D4 De sieter		100
0193h				01D3h	Timer B4 Register	TB4	106
0194h				01D4h	Timor B5 Pogistor	TDE	100
0195h				01D5h	Timer B5 Register	TB5	106
0196h				01D6h	SI/O6 Transmit/Receive Register	S6TRR	172
0197h				01D7h			
0198h				01D8h	SI/O6 Control Register	S6C	172
0199h				01D9h	SI/O6 Bit Rate Generator	S6BRG	172
019Ah				01DAh	SI/O3, 4, 5, 6 Transmit/Receive Register	S3456TRR	173
019Bh				01DBh	Timer B3 Mode Register	TB3MR	106
019Ch				01DCh	Timer B4 Mode Register	TB4MR	108 109
019Dh				01DDh	Timer B5 Mode Register	TB5MR	111
019Eh				01DEh	Interrupt Cause Select Register 0	IFSR0	70
019Fh					Interrupt Cause Select Register 1	IFSR1	71
01A0h					SI/O3 Transmit/Receive Register	S3TRR	172
01A1h				01E1h	-		
01A2h				01E2h	SI/O3 Control Register	S3C	172
01A3h					SI/O3 Bit Rate Generator	S3BRG	172
01A4h				01E4h	SI/O4 Transmit/Receive Register	S4TRR	172
01A5h				01E5h			
01A6h				01E6h	SI/O4 Control Register	S4C	172
01A7h				01E7h	SI/O4 Bit Rate Generator	S4BRG	172
01A8h				01E8h	SI/O5 Transmit/Receive Register	S5TRR	172
01A9h				01E9h	-		
01AAh				01EAh	SI/O5 Control Register	S5C	172
01ABh					SI/O5 Bit Rate Generator	S5BRG	172
01ACh					UART0 Special Mode Register 4	U0SMR4	133
01ADh				01EDh	UART0 Special Mode Register 3	U0SMR3	132
01AEh					UART0 Special Mode Register 2	U0SMR2	132
01AFh					UART0 Special Mode Register	U0SMR	131
01B0h					UART1 Special Mode Register 4	U1SMR4	133
01B1h					UART1 Special Mode Register 3	U1SMR3	132
01B2h					UART1 Special Mode Register 2	U1SMR2	132
01B3h					UART1 Special Mode Register	U1SMR	131
01B4h					UART2 Special Mode Register 4	U2SMR4	133
01B5h Flash Memory C	Control Register 1	FMR1	241		UART2 Special Mode Register 3	U2SMR3	132
01B6h	-			01F6h	UART2 Special Mode Register 2	U2SMR2	132
	Control Register 0	FMR0	241		UART2 Special Mode Register	U2SMR	131
01B8h	<u> </u>				UART2 Transmit/Receive Mode Register	U2MR	129
	nterrupt Register 2	RMAD2	75	01F9h		U2BRG	128
01BAh				01FAh			
	errupt Enable Register 2	AIER2	75	01FBh	UART2 Transmit Buffer Register	U2TB	128
01BCh					UART2 Transmit/Receive Control Register 0	U2C0	129
	nterrupt Register 3	RMAD3	75		UART2 Transmit/Receive Control Register 1	U2C1	130
01BEh				01FEh	-		
01BFh				01FFh	UART2 Receive Buffer Register	U2RB	128
L I			· · · · ·	•			

Address	Register	Symbol	Page
0200h	CAN0 Message Control Register 0	COMCTLO	. age
0201h	CANO Message Control Register 1	COMCTL1	
0202h	CANO Message Control Register 2	COMCTL2	
0203h	CANO Message Control Register 3	COMCTL3	
0200h	CANO Message Control Register 4	COMCTL4	
0205h	CANO Message Control Register 5	COMCTL5	
0205h	CANO Message Control Register 6	COMCTL5	
0200h	CANO Message Control Register 7	COMCTLO COMCTL7	
020711 0208h	CANO Message Control Register 8	COMCTL7	203
0208h	CANO Message Control Register 9	COMCTL8	
020911 020Ah	CANO Message Control Register 10	COMCTL9	
020An 020Bh		COMCTL10	
020Bn	CANO Message Control Register 11		
	CANO Message Control Register 12	COMCTL12	
020Dh	CANO Message Control Register 13	COMCTL13	
020Eh	CAN0 Message Control Register 14	COMCTL14	
020Fh	CAN0 Message Control Register 15	C0MCTL15	
0210h 0211h	CAN0 Control Register	C0CTLR	204
0212h 0213h	CAN0 Status Register	COSTR	206
021311 0214h			
0214n 0215h	CAN0 Slot Status Register	COSSTR	207
0215h			
0216h 0217h	CAN0 Interrupt Control Register	COICR	207
0217h 0218h	_		
	CAN0 Extended ID Register	COIDR	207
0219h			
021Ah	CAN0 Configuration Register	C0CONR	208
021Bh		000505	
021Ch	CAN0 Receive Error Count Register	CORECR	209
021Dh	CAN0 Transmit Error Count Register	C0TECR	209
021Eh	CAN0 Time Stamp Register	COTSR	209
021Fh		001011	200
0220h			
0221h			
0222h			
0223h			
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
022Eh			
022Fh			
0230h			
0231h	CAN1 Control Register	C1CTLR	205
0232h			
020211			
0233h			
0233h 0234h			
0234h			
0234h 0235h			
0234h 0235h 0236h			
0234h 0235h 0236h 0237h			
0234h 0235h 0236h 0237h 0238h			
0234h 0235h 0236h 0237h 0238h 0239h			
0234h 0235h 0236h 0237h 0238h 0239h 023Ah			
0234h 0235h 0236h 0237h 0238h 0239h 023Ah 023Bh			
0234h 0235h 0236h 0237h 0238h 0239h 023Ah 023Bh 023Ch			
0234h 0235h 0236h 0237h 0238h 0239h 023Ah 023Ah 023Bh 023Ch 023Dh			
0234h 0235h 0236h 0237h 0238h 0239h 023Ah 023Bh 023Ch			

Address	Register	Symbol	Page
0240h			
0241h			
0242h	CAN0 Acceptance Filter Support Register	COAFS	209
0243h		00410	200
0244h			
0245h			
0246h			
0247h			
0248h			
0249h			
024Ah			
024Bh			
024Ch			
024Dh			
024Eh			
024Fh			
0250h			
0251h			
0252h			
0253h			
0254h			
0255h			
0256h			
0257h			
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	36
025Fh	CAN0 Clock Select Register	CCLKR	37
0260h			
0261h			
0262h			
0263h			
0264h			
0265h			
0266h			
0267h			
0268h			
0269h			
026Ah			
026Bh			
026Ch			
026Dh			
026Eh			
026Fh			
0270h			
to			
0372h			
0373h			
0374h			
0375h			
0376h			
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Ch			
037Dh			
037Eh			
037Fh			

Address	Register	Symbol	Page
	Count Start Flag	TABSR	92,107,120
	Clock Prescaler Reset Flag	CPSRF	93,107
	One-Shot Start Flag	ONSF	93
	Trigger Select Register	TRGSR	93,120
	Up/Down Flag	UDF	92
0385h	op/Down hag	001	02
0386h			
0387h	Timer A0 Register	TA0	91
0388h			91
0389h	Timer A1 Register	TA1	118
038Ah			91
038Bh	Timer A2 Register	TA2	
	_		118
038Ch 038Dh	Timer A3 Register	TA3	91
	-		01
038Eh	Timer A4 Register	TA4	91
USOFII	5		118
0390h	Timer B0 Register	TB0	106
039111			
0392h	Timer B1 Register	TB1	106
0393N		וטו	
0394h	Timer B2 Register	TB2	106
03950	0	I DZ	118
	Timer A0 Mode Register	TA0MR	91
0397h	Timer A1 Mode Register	TA1MR	94 121
0398h	Timer A2 Mode Register	TA2MR	96 98,121
0399h	Timer A3 Mode Register	TA3MR	101 98
	Timer A4 Mode Register	TA4MR	103 98,121
	Timer B0 Mode Register	TB0MR	106,108
	Timer B1 Mode Register	TB1MR	109,111
	Timer B2 Mode Register	TB2MR	121
	Timer B2 Special Mode Register	TB2SC	119
039Eh	Timer Dz Opecial Mode Register	10230	119
	UART0 Transmit/Receive Mode Register	U0MR	129
	UARTO Bit Rate Generator		
	UARTO BIL Rale Generalor	U0BRG	128
03A2h	UART0 Transmit Buffer Register	U0TB	128
03A3h		110.00	100
	UARTO Transmit/Receive Control Register 0	U0C0	129
	UART0 Transmit/Receive Control Register 1	U0C1	130
03A6h	UART0 Receive Buffer Register	U0RB	128
03A/h	Ç		
	UART1 Transmit/Receive Mode Register	U1MR	129
	UART1 Bit Rate Generator	U1BRG	
03AAh		OTBILG	128
USADII	LIART1 Transmit Buffer Begister		
03ACh	UART1 Transmit Buffer Register	U1TB	128
	UART1 Transmit/Receive Control Register 0	U1TB U1C0	128 129
03ADh	-	U1TB	128
03ADh 03AEh	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	128 129 130
03ADh	UART1 Transmit/Receive Control Register 0	U1TB U1C0	128 129
03ADh 03AEh 03AFh	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	128 129 130
03ADh 03AEh 03AFh	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	128 129 130 128
03ADh 03AEh 03AFh 03B0h	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	128 129 130 128
03ADh 03AEh 03AFh 03B0h 03B1h	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	128 129 130 128
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	128 129 130 128
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	128 129 130 128
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	128 129 130 128
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	128 129 130 128
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2	U1TB U1C0 U1C1 U1RB UCON	128 129 130 128 131
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	128 129 130 128
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Cause Select Register	U1TB U1C0 U1C1 U1RB UCON DM0SL	128 129 130 128 131 80
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B6h 03B7h 03B8h 03B9h 03BAh	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2	U1TB U1C0 U1C1 U1RB UCON	128 129 130 128 131
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03B8h	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Cause Select Register	U1TB U1C0 U1C1 U1RB UCON DM0SL	128 129 130 128 131 80
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B6h 03B8h 03B9h 03BAh 03BBh 03BCh	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Cause Select Register	U1TB U1C0 U1C1 U1RB UCON DM0SL	128 129 130 128 131 80
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03BBh 03BCh 03BDh	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register 1 UART Transmit/Receive Control Register 2 UART Transmit/Receive Control Register 2 DMA0 Request Cause Select Register DMA1 Request Cause Select Register CRC Data Register	U1TB U1C0 U1C1 U1RB UCON DM0SL DM0SL DM1SL CRCD	128 129 130 128 131 80 80 81 196
03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03BBh 03BCh 03BDh	UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Cause Select Register DMA1 Request Cause Select Register	U1TB U1C0 U1C1 U1RB UCON DM0SL DM1SL	128 129 130 128 131 80 81

Address	Register	Symbol	Page
03C0h			
03C1h	A/D Register 0	AD0	
03C2h	A/D Register 1	AD1	
03C3h	A/D Register 1		
03C4h	A/D Register 2	AD2	
03C5h			
03C6h 03C7h	A/D Register 3	AD3	
03C8h			180
03C9h	A/D Register 4	AD4	
03CAh		ADE	
03CBh	A/D Register 5	AD5	
03CCh	A/D Register 6	AD6	
03CDh	A/D Register 0	1.00	
03CEh	A/D Register 7	AD7	
03CFh	···= ···g·····		
03D0h 03D1h			
03D1h			
03D2h			
03D4h	A/D Control Register 2	ADCON2	180
03D5h			
	A/D Control Register 0	ADCON0	179,182,184
03D7h	A/D Control Register 1	ADCON1	186,188,190
03D8h	D/A Register 0	DA0	195
03D9h			
	D/A Register 1	DA1	195
03DBh			
	D/A Control Register	DACON	195
03DDh			
	Port P14 Control Register	PC14	231
03DFn 03E0h	Pull-Up Control Register 3	PUR3 P0	233 231
03E01	Port P0 Register Port P1 Register	P1	231
03E2h	Port P0 Direction Register	PD0	230
03E3h	Port P1 Direction Register	PD1	230
03E4h	Port P2 Register	P2	231
03E5h	Port P3 Register	P3	231
03E6h	Port P2 Direction Register	PD2	230
03E7h	Port P3 Direction Register	PD3	230
03E8h	Port P4 Register	P4	231
	Port P5 Register	P5	231
	Port P4 Direction Register	PD4	230
	Port P5 Direction Register	PD5	230
	Port P6 Register	P6	231
	Port P7 Register Port P6 Direction Register	P7	231 230
03EEn 03EFh	Port P6 Direction Register Port P7 Direction Register	PD6 PD7	230
03E111	Port P8 Register	P8	230
03F1h	Port P9 Register	P9	231
03F2h	Port P8 Direction Register	PD8	230
03F3h	Port P9 Direction Register	PD9	230
03F4h	Port P10 Register	P10	231
03F5h	Port P11 Register	P11	231
03F6h	Port P10 Direction Register	PD10	230
03F7h	Port P11 Direction Register	PD11	230
03F8h	Port P12 Register	P12	231
03F9h	Port P13 Register	P13	231
03FAh	Port P12 Direction Register	PD12	230
03FBh	Port P13 Direction Register	PD13	230
03FCh	Pull-up Control Register 0 Pull-up Control Register 1	PUR0	232
03FDn 03FEh	Pull-up Control Register 1 Pull-up Control Register 2	PUR1	232
03FEn	Port Control Register	PUR2 PCR	232 233
001111		1 OIL	200

Renesas

M16C/6N Group (M16C/6NL, M16C/6NN) SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Rev.1.02 Jul 01, 2005

1. Overview

The M16C/6N Group (M16C/6NL, M16C/6NN) of single-chip microcomputers are built using the high-performance silicon gate CMOS process using an M16C/60 Series CPU core and are packaged in 100-pin and 128-pin plastic molded LQFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. Being equipped with one CAN (Controller Area Network) module in M16C/6N Group (M16C/6NL, M16C/6NN), the microcomputer is suited to car audio and industrial control systems. The CAN module complies with the 2.0B specification. In addition, this microcomputer contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA and communication equipment which requires high-speed arithmetic/logic operations.

1.1 Applications

Car audio and industrial control systems, other

Tables 1.1 and 1.2 list a performance outline of M16C/6N Group (M16C/6NL, M16C/6NN).

	Item		Performance	
CPU	Number of Bas	ic Instructions	91 instructions	
	Minimum Instructio	n Execution Time	41.7ns (f(BCLK) = 24MHz, 1/1 prescaler, without software wait	
	Operation Mod	le	Single-chip mode	
	Address Space	Э	1 Mbyte	
	Memory Capad	city	See Table 1.3 Product List	
Peripheral	Port		Input/Output: 87 pins, Input: 1 pin	
Function	Multifunction Ti	imer	Timer A: 16 bits \times 5 channels	
			Timer B: 16 bits \times 6 channels	
			Three-phase motor control circuit	
	Serial I/O		3 channels	
			Clock synchronous, UART, I ² C-bus ⁽¹⁾ , IEBus ⁽²⁾	
			2 channels	
			Clock synchronous	
	A/D Converter		10-bit A/D converter: 1 circuit, 26 channels	
	D/A Converter		8 bits \times 2 channels	
	DMAC		2 channels	
	CRC Calculation Circuit		CRC-CCITT	
-	CAN Module		1 channel with 2.0B specification	
	Watchdog Tim	er	15 bits \times 1 channel (with prescaler)	
	Interrupt		Internal: 30 sources, External: 9 sources	
			Software: 4 sources, Priority level: 7 levels	
Clock Generating Circuit		ing Circuit	4 circuits	
			 Main clock oscillation circuit (*) 	
			Sub clock oscillation circuit (*)	
			On-chip oscillator	
			 PLL frequency synthesizer 	
			(*) Equipped with a built-in feedback resistor	
	Oscillation Stop Detection		Main clock oscillation stop and re-oscillation detection functior	
	Function			
Electrical	Supply Voltage	Э	VCC = 3.0 to 5.5V	
Characteristics			(f(BCLK) = 24MHz, 1/1 prescaler, without software wait)	
	Power	Mask ROM	19mA (f(BCLK) = 24MHz, PLL operation, no division)	
	Consumption	Flash Memory	21mA (f(BCLK) = 24MHz, PLL operation, no division)	
		Mask ROM	3µA (f(BCLK) = 32kHz, Wait mode, Oscillation capacity Low	
	Flash Memory		0.8µA (Stop mode, Topr = 25°C)	
Flash Memory		11,	3.3 ± 0.3V or 5.0 ± 0.5V	
Version	Program and Er	ase Endurance	100 times	
I/O	I/O Withstand	Voltage	5.0V	
	Output Curren		5mA	
<u> </u>	nbient Tempera	ture	-40 to 85°C	
Device Config	guration		CMOS high performance silicon gate	
Package			100-pin plastic mold LQFP	

Table 1.1	Performance	Outline of	of M16C/6N	Group	(100-pin	Version:	M16C/6NL)
-----------	-------------	------------	------------	-------	----------	----------	-----------

NOTES:

1. I²C-bus is a registered trademark of Koninklijke Philips Electronics N.V.

2. IEBus is a registered trademark of NEC Electronics Corporation.

|--|

Item			Performance	
CPU	Number of Bas	ic Instructions	91 instructions	
	Minimum Instructio	n Execution Time	41.7ns (f(BCLK) = 24MHz, 1/1 prescaler, without software wait	
	Operation Mod	le	Single-chip mode	
	Address Space	Э	1 Mbyte	
	Memory Capa	city	See Table 1.3 Product List	
Peripheral	Port		Input/Output: 113 pins, Input: 1 pin	
Function	Multifunction T	mer	Timer A: 16 bits \times 5 channels	
			Timer B: 16 bits \times 6 channels	
			Three-phase motor control circuit	
	Serial I/O		3 channels	
			Clock synchronous, UART, I ² C-bus ⁽¹⁾ , IEBus ⁽²⁾	
			4 channels	
			Clock synchronous	
	A/D Converter		10-bit A/D converter: 1 circuit, 26 channels	
	D/A Converter		8 bits \times 2 channels	
	DMAC		2 channels	
	CRC Calculation Circuit		CRC-CCITT	
	CAN Module		1 channel with 2.0B specification	
	Watchdog Timer		15 bits \times 1 channel (with prescaler)	
	Interrupt		Internal: 32 sources, External: 12 sources	
			Software: 4 sources, Priority level: 7 levels	
	Clock Generating Circuit		4 circuits	
5			Main clock oscillation circuit (*)	
	Oscillation Stop Detection		 Sub clock oscillation circuit (*) 	
			On-chip oscillator	
			PLL frequency synthesizer	
			(*) Equipped with a built-in feedback resistor	
			Main clock oscillation stop and re-oscillation detection function	
	Function			
Electrical	Supply Voltage	Э	VCC = 3.0 to 5.5V	
Characteristics			(f(BCLK) = 24MHz, 1/1 prescaler, without software wait)	
	Power	Mask ROM	19mA (f(BCLK) = 24MHz, PLL operation, no division)	
	Consumption	Flash Memory	21mA (f(BCLK) = 24MHz, PLL operation, no division)	
		Mask ROM	3µA (f(BCLK) = 32kHz, Wait mode, Oscillation capacity Low	
		Flash Memory	0.8µA (Stop mode, Topr = 25°C)	
Flash Memory	Program/Erase	Supply Voltage	3.3 ± 0.3V or 5.0 ± 0.5V	
Version	Program and Er	ase Endurance	100 times	
I/O	I/O Withstand	Voltage	5.0V	
Characteristics	Output Curren	t	5mA	
Operating Am	bient Tempera	ture	-40 to 85°C	
Device Config	guration		CMOS high performance silicon gate	
Package			128-pin plastic mold LQFP	

NOTES:

1. l²C-bus is a registered trademark of Koninklijke Philips Electronics N.V.

2. IEBus is a registered trademark of NEC Electronics Corporation.

1.3 Block Diagram

Figure 1.1 shows a block diagram of M16C/6N Group (M16C/6NL, M16C/6NN).

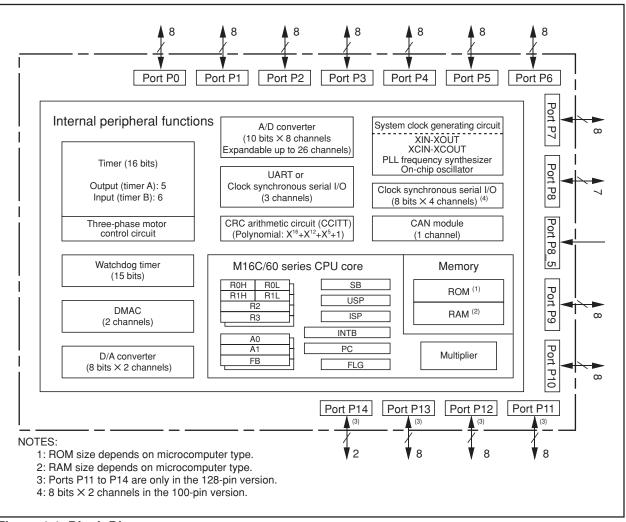


Figure 1.1 Block Diagram

1.4 Product List

Table 1.3 lists the M16C/6N Group (M16C/6NL, M16C/6NN) products and Figure 1.2 shows the type numbers, memory sizes and packages.

Table 1.3 Product List					As of Jul. 2005
Type No.		ROM Capacity	RAM Capacity	Package Type	Remarks
M306NLFHGP		384 K + 4 Kbytes	31 Kbytes	PLQP0100KB-A	Flash memory
M306NNFHGP				PLQP0128KB-A	version
M306NLFJGP	(D)	512 K + 4 Kbytes	31 Kbytes	PLQP0100KB-A	
M306NNFJGP				PLQP0128KB-A	
M306NLME-XXXGP		192 Kbytes	16 Kbytes	PLQP0100KB-A	Mask ROM version
M306NNME-XXXGP				PLQP0128KB-A	
M306NLMG-XXXGP		256 Kbytes	20 Kbytes	PLQP0100KB-A	
M306NNMG-XXXGP				PLQP0128KB-A	

(D): Under development

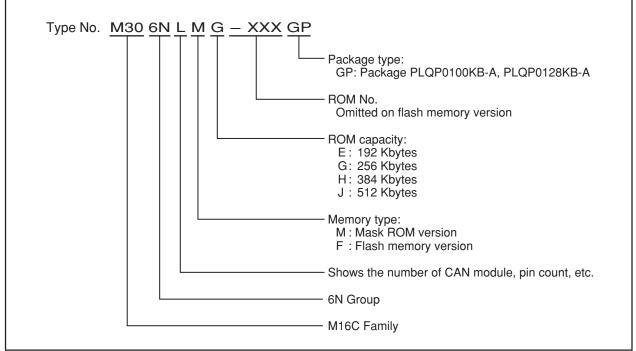


Figure 1.2 Type No., Memory Size, and Package

1.5 Pin Configuration

Figures 1.3 and 1.4 show the pin configuration (top view).

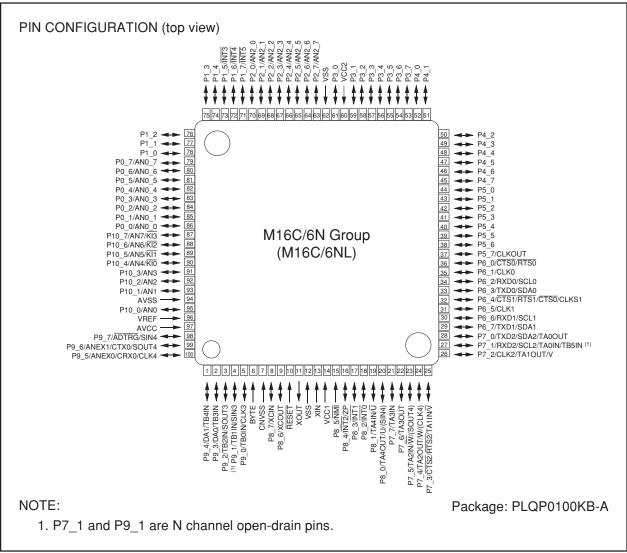


Figure 1.3 Pin Configuration (Top View) (1)

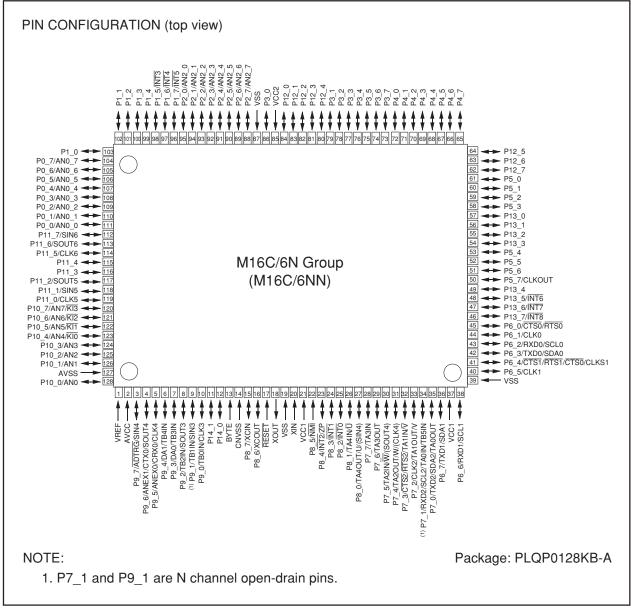


Figure 1.4 Pin Configuration (Top View) (2)

1.6 Pin Description

Tables 1.4 and 1.5 list the pin descriptions.

Signal Name			Departmention
Signal Name	Pin Name	I/O Type	
Power supply	VCC1, VCC2,	I	Apply 3.0 to 5.5V to the VCC1 and VCC2 pins and 0V to the
input	VSS		VSS pin. The VCC apply condition is that VCC2 = VCC1 $^{(1)}$.
Analog power	AVCC, AVSS	I	Applies the power supply for the A/D converter. Connect the
supply input			AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	The microcomputer is in a reset state when applying "L" to the
			this pin.
CNVSS	CNVSS	I	Connect this pin to VSS.
External data	BYTE	I	Connect this pin to VSS.
bus width			
select input			
Main clock	XIN	I	I/O pins for the main clock oscillation circuit. Connect a ceramic
input			resonator or crystal oscillator between XIN and XOUT ⁽²⁾ .
Main clock	XOUT	0	To use the external clock, input the clock from XIN and leave
output			XOUT open.
Sub clock	XCIN	I	I/O pins for a sub clock oscillation circuit. Connect a crystal
input			oscillator between XCIN and XCOUT (2).
Sub clock	XCOUT	0	To use the external clock, input the clock from XCIN and leave
output			XCOUT open.
Clock output	CLKOUT	0	The clock of the same cycle as fC, f8, or f32 is output.
INT interrupt input			Input pins for the INT interrupt.
NMI interrupt	NMI		Input pin for the NMI interrupt.
input '			
Key input	KIO to KI3	1	Input pins for the key input interrupt.
interrupt input			
Timer A	TA0OUT to TA4OUT	I/O	These are timer A0 to timer A4 I/O pins.
	TA0IN to TA4IN	1	These are timer A0 to timer A4 input pins.
	ZP		Input pin for the Z-phase.
Timer B	TB0IN to TB5IN		These are timer B0 to timer B5 input pins.
		0	These are Three-phase motor control output pins.
control output	-, -, -, -, -,,		
Serial I/O	CTS0 to CTS2		These are send control input pins.
	RTS0 to RTS2	0	These are receive control output pins.
	CLK0 to CLK6 ⁽³⁾	I/O	These are transfer clock I/O pins.
	RXD0 to RXD2	1/ 0	These are serial data input pins.
	SIN3 to SIN6 ⁽³⁾		These are serial data input pins.
	TXD0 to TXD2	0	These are serial data output pins.
	SOUT3 to SOUT6 ⁽³⁾	0	These are serial data output pins.
	CLKS1	0	This is output pin for transfer clock output from multiple pins function.
I ² C mode	SDA0 to SDA2	1/O	These are serial data I/O pins.
			These are transfer clock I/O pins. (except SCL2 for the
	SCL0 to SCL2	I/O	
	Output I/O· In	put/Outpu	N-channel open drain output.)

Table 1.4	Pin Description	(100-pin and	128-pin	Versions) (1)
		`		, , , ,

I: Input O: Output I/O: Input/Output

NOTES:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2. Ask the oscillator maker the oscillation characteristic.

3. INT6 to INT8, CLK5, CLK6, SIN5, SIN6, SOUT5, SOUT6 are only in the 128-pin version.

RENESAS

Table 1.5 Pin Description (100-pin and 128-pin Versions) (2)

Signal Name	Pin Name	I/O Type	Description
Reference	VREF	I	Applies the reference voltage for the A/D converter and D/A
voltage input			converter.
A/D converter	AN0 to AN7	I	Analog input pins for the A/D converter.
	AN0_0 to AN0_7		
	AN2_0 to AN2_7		
	ADTRG	I	This is an A/D trigger input pin.
	ANEX0	I/O	This is the extended analog input pin for the A/D converter,
			and is the output in external op-amp connection mode.
	ANEX1	I	This is the extended analog input pin for the A/D converter.
D/A converter	DA0, DA1	0	These are the output pins for the D/A converter.
CAN module	CRX0	I	This is the input pin for the CAN module.
	CTX0	0	This is the output pin for the CAN module.
I/O port	P0_0 to P0_7	I/O	8-bit I/O ports in CMOS, having a direction register to select
	P1_0 to P1_7		an input or output.
	P2_0 to P2_7		Each pin is set as an input port or output port. An input port
	P3_0 to P3_7		can be set for a pull-up or for no pull-up in 4-bit unit by
	P4_0 to P4_7		program.
	P5_0 to P5_7		(except P7_1 and P9_1 for the N-channel open drain output.)
	P6_0 to P6_7		
	P7_0 to P7_7		
	P8_0 to P8_4		
	P8_6, P8_7		
	P9_0 to P9_7		
	P10_0 to P10_7		
	P11_0 to P11_7 ⁽¹⁾		
	P12_0 to P12_7 (1)		
	P13_0 to P13_7 (1)		
	P14_0, P14_1 (1)		
Input port	P8_5	I	Input pin for the MMI interrupt.
			Pin states can be read by the P8_5 bit in the P8 register.

I: Input O: Output I/O: Input/Output

NOTE:

1. Ports P11 to P14 are only in the 128-pin version.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

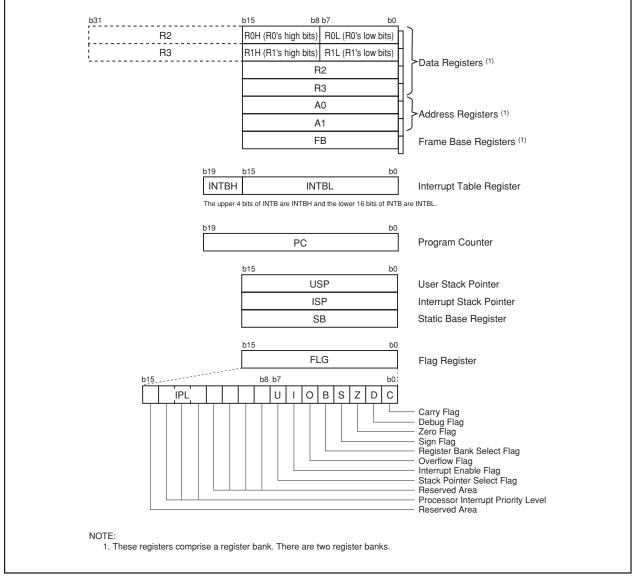


Figure 2.1 CPU Registers

2.1 Data Registers (R0, R1, R2, and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

2.2 Address Registers (A0 and A1)

The A0 register consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and arithmetic/logic operations. A1 is the same as A0.

In some instructions, A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

This flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt. Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is set to "0" when the interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is "0"; USP is selected when the U flag is "1". The U flag is set to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt request is enabled.

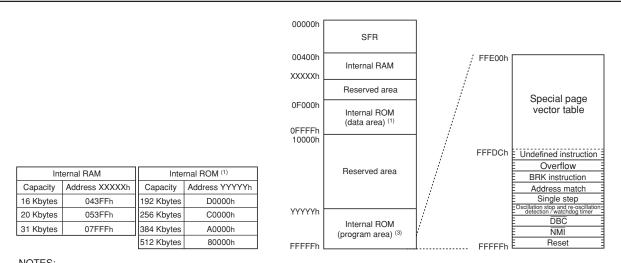
2.8.10 Reserved Area

When white to this bit, write "0". When read, its content is indeterminate.

3. Memory

Figure 3.1 shows a memory map of the M16C/6N Group (M16C/6NL, M16C/6NN). The address space extends the 1 Mbyte from address 00000h to FFFFh.

The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a 512-Kbyte internal ROM is allocated to the addresses from 80000h to FFFFFh.


As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 31-Kbyte internal RAM is allocated to the addresses from 00400h to 07FFFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SFR is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to **M16C/60 and M16C/20 Series Software Manual**.

NOTES:

- 1. As for the flash memory version, 4-Kbyte space (block A) exists.
- 2. Shown here is a memory map for the case where the PM13 bit in the PM1 register is "1".
- If the PM13 bit is set to "0", 15 Kbytes of the internal RAM and 192 Kbytes of the internal ROM can be used.
- 3. When using the masked ROM version, write nothing to internal ROM area.

Figure 3.1 Memory Map

4. Special Function Register (SFR)

SFR (Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.12 list the SFR information.

Table	4.1	SFR	Information	(1)	۱
Table	T . I	0111	mormation	\!	,

Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h	Processor Mode Register 0	PM0	00h
0004h	Processor Mode Register 0 Processor Mode Register 1	PM0 PM1	00001000b
0005h 0006h	System Clock Control Register 0	СМО	01001000b
0006h	System Clock Control Register 1	CM0 CM1	00100000b
0007h	System Olock Control negister 1		001000000
00000h	Address Match Interrupt Enable Register	AIER	XXXXXX00b
000Ah	Protect Register	PRCR	XX000000b
000Bh			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
000Ch	Oscillation Stop Detection Register (1)	CM2	0X00000b
000Dh			
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00XXXXXXb
0010h			00h
0011h	Address Match Interrupt Register 0	RMAD0	00h
0012h			X0h
0013h			
0014h	Adduces Match Internation Deviation of		00h
0015h	Address Match Interrupt Register 1	RMAD1	00h
0016h		 	X0h
0017h 0018h			
0018h			
001911 001Ah			
001Ah			
001Ch	PLL Control Register 0	PLC0	0001X010b
001Dh			
001Eh	Processor Mode Register 2	PM2	XXX00000b
001Fh			
0020h			XXh
0021h	DMA0 Source Pointer	SAR0	XXh
0022h			XXh
0023h			
0024h			XXh
0025h	DMA0 Destination Pointer	DAR0	XXh
0026h			XXh
0027h 0028h			XXh
0028h	DMA0 Transfer Counter	TCR0	XXh
0023h			XXII
002An			
002Dh	DMA0 Control Register	DM0CON	00000X00b
002Dh			
002Eh			
002Fh			
0030h			XXh
0031h	DMA1 Source Pointer	SAR1	XXh
0032h			XXh
0033h			
0034h			XXh
0035h	DMA1 Destination Pointer	DAR1	XXh
0036h		 	XXh
0037h			VVh
0038h	DMA1 Transfer Counter	TCR1	XXh XXh
0039h 003Ah			AAII
003An 003Bh			
003Bh	DMA1 Control Register	DM1CON	00000X00b
003Ch			00000000
003Eh			
003Fh			

X: Undefined

NOTES:

The CM20, CM21, and CM27 bits in the CM2 register do not change at oscillation stop detection reset.
 The blank areas are reserved and cannot be accessed by users.

Table 4.2 SFR Information (2)

Address	Register	Symbol	After Reset
0040h			
0041h	CAN0 Wake-up Interrupt Control Register	C01WKIC	XXXXX000b
0042h	CAN0 Successful Reception Interrupt Control Register	CORECIC	XXXXX000b
0043h	CAN0 Successful Transmission Interrupt Control Register	COTRMIC	XXXXX000b
0044h	INT3 Interrupt Control Register	INT3IC	XX00X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	
0040[]	SI/O5 Interrupt Control Register (1)	S5IC	XXXXX000b
0046h	Timer B4 Interrupt Control Register	TB4IC	VVVVV000L
0040[]	UART1 Bus Collision Detection Interrupt Control Register	U1BCNIC	XXXXX000b
0047h	Timer B3 Interrupt Control Register	TB3IC	VVVVV000h
004/11	UART0 Bus Collision Detection Interrupt Control Register	U0BCNIC	XXXXX000b
0048h	SI/O4 Interrupt Control Register	S4IC	XX00X000b
004011	INT5 Interrupt Control Register	INT5IC	
0049h	SI/O3 Interrupt Control Register	S3IC	XX00X000b
	INT4 Interrupt Control Register	INT4IC	
004Ah	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXXX000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXXX000b
004Dh	CANO Error Interrupt Control Register	C01ERRIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
	Key Input Interrupt Control Register	KUPIC	
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	Timer A0 Interrupt Control Register	TAOIC	XXXXX000b
0056h	Timer A1 Interrupt Control Register	TA1IC TA2IC	XXXXX000b
0057h	Timer A2 Interrupt Control Register	INT7IC	XX00X000b
	INT7 Interrupt Control Register (1)	TA3IC	
0058h	Timer A3 Interrupt Control Register INT6 Interrupt Control Register ⁽¹⁾	INT6IC	XX00X000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXXX000b
	Timer A4 Interrupt Control Register	TRAIC	duuuaaaa
005Ah	SI/O6 Interrupt Control Register (1)	S6IC	XXXXX000b
	Timer B1 Interrupt Control Register	TB1IC	
005Bh	INT8 Interrupt Control Register (1)	INT8IC	XX00X000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	INT1 Interrupt Control Register	INT0IO INT1IC	XX00X000b
005Eh	INT2 Interrupt Control Register	INT2IC	XX00X000b
0060h			XXh
0061h			XXh
0062h			XXh
0063h	CAN0 Message Box 0: Identifier / DLC		XXh
0064h			XXh
0065h			XXh
0066h			XXh
0067h			XXh
0068h			XXh
0069h	CANO Mossago Box 0: Data Field		XXh
006Ah	CAN0 Message Box 0: Data Field		XXh
006Bh			XXh
006Ch			XXh
006Dh			XXh
006Eh	CAN0 Message Box 0: Time Stamp		XXh
006Fh	or we we say box of the orally		XXh
0070h			XXh
0071h			XXh
0072h	CAN0 Message Box 1: Identifier / DLC		XXh
0073h			XXh
0074h			XXh
0075h			XXh
0076h			XXh
0077h			XXh
0078h			XXh
0079h	CAN0 Message Box 1: Data Field		XXh
007Ah			XXh
007Bh			XXh
007Ch 007Dh			XXh
007Dh 007Eh		 	XXh
007En 007Fh	CAN0 Message Box 1: Time Stamp		XXh XXh
007711	, i		AAII

X: Undefined

NOTES:

These registers exist only in the 128-pin version.
 The blank area is reserved and cannot be accessed by users.

RENESAS

Table 4.3 SFR Information (3)

Address	Register	Symbol	After Reset
0080h			XXh
0081h			XXh
0082h	CAN0 Message Box 2: Identifier / DLC		XXh
0083h	UNING MESSAYE DUX 2. INCHILINGI / DLU		XXh
0084h			XXh
0085h			XXh
0086h			XXh
0087h			XXh
0088h			XXh
0089h	CAN0 Message Box 2: Data Field		XXh XXh
008Ah 008Bh			XXh
008Ch			XXh
008Dh			XXh
008Eh			XXh
008Fh	CAN0 Message Box 2: Time Stamp		XXh
0090h			XXh
0091h			XXh
0092h	CAN0 Message Box 3: Identifier / DLC		XXh
0093h	orano message box o. Identiner / DEO		XXh
0094h			XXh
0095h			XXh
0096h			XXh
0097h			XXh
0098h			XXh XXh
0099h 009Ah	CAN0 Message Box 3: Data Field		XXn XXh
009An 009Bh			XXh
009Bn			XXh
009Dh			XXh
009Eh			XXh
009Fh	CAN0 Message Box 3: Time Stamp		XXh
00A0h			XXh
00A1h			XXh
00A2h	CAN0 Message Box 4: Identifier / DLC		XXh
00A3h	On to message box 4. Identifier / DEO		XXh
00A4h			XXh
00A5h			XXh
00A6h			XXh
00A7h			XXh XXh
00A8h 00A9h			XXh
00A9h	CAN0 Message Box 4: Data Field		XXh
00AAn 00ABh			XXh
00ACh			XXh
00ADh			XXh
00AEh	CANO Massaga Bay 4: Tima Stamp		XXh
00AFh	CAN0 Message Box 4: Time Stamp		XXh
00B0h			XXh
00B1h			XXh
00B2h	CAN0 Message Box 5: Identifier / DLC		XXh
00B3h			XXh
00B4h			XXh
00B5h			XXh
00B6h 00B7h			XXh XXh
00B7h 00B8h			XXh
00B8h			XXh
00B9h	CAN0 Message Box 5: Data Field		XXh
00BBh			XXh
00BCh			XXh
00BDh			XXh
00BEh	CANO Magagaga Day 51 Tima Stamp		XXh
00BFh	CAN0 Message Box 5: Time Stamp		XXh
V: Undofin			

X: Undefined

Table 4.4 SFR Information (4)

Address	Register	Symbol	After Reset
00C0h	U U		XXh
00C1h			XXh
00C2h	CAN0 Message Box 6: Identifier / DLC		XXh XXh
00C3h 00C4h			XXh
00C5h			XXh
00C6h			XXh
00C7h			XXh
00C8h			XXh
00C9h	CAN0 Message Box 6: Data Field		XXh
00CAh			XXh
00CBh			XXh XXh
00CCh 00CDh			XXh
00CEh			XXh
00CFh	CAN0 Message Box 6: Time Stamp		XXh
00D0h			XXh
00D1h			XXh
00D2h	CAN0 Message Box 7: Identifier / DLC		XXh
00D3h			XXh
00D4h 00D5h			XXh XXh
00D5h 00D6h			XXh
00D0h			XXh
00D8h			XXh
00D9h	CAN0 Message Box 7: Data Field		XXh
00DAh	or the message box 7. Data field		XXh
00DBh			XXh
00DCh			XXh XXh
00DDh 00DEh			XXh
00DEh	CAN0 Message Box 7: Time Stamp		XXh
00E0h			XXh
00E1h			XXh
00E2h	CAN0 Message Box 8: Identifier / DLC		XXh
00E3h			XXh
00E4h 00E5h			XXh XXh
00E6h			XXh
00E7h			XXh
00E8h			XXh
00E9h	CAN0 Message Box 8: Data Field		XXh
00EAh	on the message box of bala held		XXh
00EBh			XXh
00ECh 00EDh			XXh XXh
00EDh			XXh
00EFh	CAN0 Message Box 8: Time Stamp		XXh
00F0h			XXh
00F1h			XXh
00F2h	CAN0 Message Box 9: Identifier / DLC		XXh
00F3h			XXh XXh
00F4h 00F5h			XXn XXh
00F5h			XXh
00F7h			XXh
00F8h			XXh
00F9h	CAN0 Message Box 9: Data Field		XXh
00FAh	er and meesuge box of build from		XXh
00FBh			XXh
00FCh			XXh XXh
00FDh 00FEh			XXn XXh
00FEh	CAN0 Message Box 9: Time Stamp		XXh
V: Undofin		- I	77711

X: Undefined

Table 4.5 SFR Information (5)

Address	Register	Symbol	After Reset
0100h	5		XXh
0101h			XXh
0102h	CAN0 Message Box 10: Identifier / DLC		XXh XXh
0103h 0104h			XXh
0104h			XXh
0106h			XXh
0107h			XXh
0108h			XXh
0109h 010Ah	CAN0 Message Box 10: Data Field		XXh XXh
010An 010Bh			XXh
010Ch			XXh
010Dh			XXh
010Eh	CAN0 Message Box 10: Time Stamp		XXh
010Fh			XXh
0110h 0111h			XXh XXh
01111h			XXh
0113h	CAN0 Message Box 11: Identifier / DLC		XXh
0114h			XXh
0115h			XXh
0116h			XXh
0117h 0118h			XXh XXh
0119h			XXh
011Ah	CAN0 Message Box 11: Data Field		XXh
011Bh			XXh
011Ch			XXh
011Dh			XXh XXh
011Eh 011Fh	CAN0 Message Box 11: Time Stamp		XXh
0120h			XXh
0121h			XXh
0122h	CAN0 Message Box 12: Identifier / DLC		XXh
0123h			XXh
0124h			XXh XXh
0125h 0126h			XXh
0120h			XXh
0128h			XXh
0129h	CAN0 Message Box 12: Data Field		XXh
012Ah			XXh XXh
012Bh 012Ch			XXh
012Dh			XXh
012Eh	CAN0 Message Box 12: Time Stamp		XXh
012Fh	UNIV MESSAYE DUX 12. TIME Stamp		XXh
0130h			XXh
0131h 0132h			XXh XXh
013211 0133h	CAN0 Message Box 13: Identifier / DLC		XXh
0134h			XXh
0135h			XXh
0136h			XXh
0137h			XXh
0138h 0139h			XXh XXh
0139h	CAN0 Message Box 13: Data Field		XXh
013Bh			XXh
013Ch			XXh
013Dh			XXh
013Eh	CAN0 Message Box 13: Time Stamp		XXh
013Fh			XXh

X: Undefined

Table 4.6 SFR Information (6)

Address	Register	Symbol	After Reset
0140h			XXh
0141h			XXh
0142h	CAN0 Message Box 14: Identifier /DLC		XXh
0143h	on the meddage box in the miner / bed		XXh
0144h			XXh
0145h		_	XXh
0146h			XXh XXh
0147h 0148h			XXh
0148h			XXh
014Ah	CAN0 Message Box 14: Data Field		XXh
014Bh			XXh
014Ch			XXh
014Dh			XXh
014Eh	CAN0 Message Box 14: Time Stamp		XXh
014Fh			XXh
0150h			XXh
0151h			XXh
0152h 0153h	CAN0 Message Box 15: Identifier /DLC		XXh XXh
0153h 0154h			XXh
0155h			XXh
0156h			XXh
0157h			XXh
0158h			XXh
0159h	CAN0 Message Box 15: Data Field		XXh
015Ah	OANO Message Dox 13. Data new		XXh
015Bh			XXh
015Ch			XXh
015Dh 015Eh		_	XXh XXh
015Eh	CAN0 Message Box 15: Time Stamp		XXh
0160h			XXh
0161h			XXh
0162h	CAN0 Global Mask Register	COGMR	XXh
0163h	CANO Global Mask negister	CUGMR	XXh
0164h			XXh
0165h		_	XXh
0166h			XXh XXh
0167h 0168h			XXh
0169h	CAN0 Local Mask A Register	COLMAR	XXh
016Ah			XXh
016Bh			XXh
016Ch			XXh
016Dh			XXh
016Eh	CAN0 Local Mask B Register	COLMBR	XXh
016Fh	CANYO LOGILI MIRAN DI HEGISIEI	COLMENT	XXh
0170h			XXh
0171h 0172h			XXh
0172h 0173h			
0173h			
0175h			
0176h			
0177h			
0178h			
0179h			
017Ah			
017Bh 017Ch			
017Ch 017Dh			
017Dn 017Eh			
017Eh		1	
			•

X: Undefined

NOTE:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.7 SFR Information (7)

Address	Register	Symbol	After Reset
0180h			
0181h			
0182h			
0183h			
0184h 0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch			
018Dh			
018Eh			
018Fh 0190h			
01901 0191h			
01911 0192h			
0193h			
0194h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch 019Dh			
019Dh			
019En			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h 01AAh			
01AAn 01ABh			
01ABN 01ACh			
01ADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h			
01B3h			
01B4h	Flack Manager Constral Deviator 1 (1)		
01B5h	Flash Memory Control Register 1 (1)	FMR1	0X00XX0Xb
01B6h 01B7h	Flash Memory Control Register 0 ⁽¹⁾	FMR0	0000001b
01B7h			0000001b 00h
01B9h	Address Match Interrupt Register 2	RMAD2	00h
01BAh			X0h
01BBh	Address Match Interrupt Enable Register 2	AIER2	XXXXXX00b
01BCh	······································		00h
01BDh	Address Match Interrupt Register 3	RMAD3	00h
01BEh			X0h
01BFh			
X · LIndefine			

X: Undefined

NOTES:

These registers are included in the flash memory version. Cannot be accessed by users in the mask ROM version.
 The blank areas are reserved and cannot be accessed by users.

Table 4.8 SFR Information (8)

Address	Register	Symbol	After Reset
01C0h	Timer B3, B4, B5 Count Start Flag	TBSR	000XXXXXb
01C1h			
01C2h	Timer A1-1 Register	TA11	XXh
01C3h		IAII	XXh
01C4h	Timer A2-1 Register	TA21	XXh
01C5h		1821	XXh
01C6h	Timer A4-1 Register	TA41	XXh
01C7h	C C		XXh
01C8h	Three-Phase PWM Control Register 0	INVC0	00h
01C9h	Three-Phase PWM Control Register 1	INVC1	00h
01CAh	Three-Phase Output Buffer Register 0	IDB0	00h
01CBh	Three-Phase Output Buffer Register 1	IDB1	00h
01CCh	Dead Time Timer	DTT	XXh
01CDh	Timer B2 Interrupt Occurrence Frequency Set Counter	ICTB2	XXh
01CEh			
01CFh	Interrupt Cause Select Register 2	IFSR2	X000000b
01D0h	Timer B3 Register	твз —	XXh
01D1h			XXh
01D2h	Timer B4 Register	ТВ4 —	XXh
01D3h			XXh
01D4h	Timer B5 Register	тв5 —	XXh
01D5h			XXh
01D6h	SI/O6 Transmit/Receive Register (1)	S6TRR	XXh
01D7h			
01D8h	SI/O6 Control Register (1)	S6C	0100000b
01D9h	SI/O6 Bit Rate Generator ⁽¹⁾	S6BRG	XXh
01DAh	SI/O3, 4, 5, 6 Transmit/Receive Register (2)	S3456TRR	XXXX0000b
01DBh	Timer B3 Mode Register	TB3MR	00XX0000b
01DCh	Timer B4 Mode Register	TB4MR	00XX0000b
01DDh	Timer B5 Mode Register	TB5MR	00XX0000b
01DEh	Interrupt Cause Select Register 0	IFSR0	00h
01DFh	Interrupt Cause Select Register 1	IFSR1	00h
01E0h	SI/O3 Transmit/Receive Register	S3TRR	XXh
01E1h			
01E2h	SI/O3 Control Register	S3C	0100000b
01E3h	SI/O3 Bit Rate Generator	S3BRG	XXh
01E4h	SI/O4 Transmit/Receive Register	S4TRR	XXh
01E5h			
01E6h	SI/O4 Control Register	S4C	0100000b
01E7h	SI/O4 Bit Rate Generator	S4BRG	XXh
01E8h	SI/O5 Transmit/Receive Register (1)	S5TRR	XXh
01E9h			
01EAh	SI/O5 Control Register (1)	S5C	0100000b
01EBh	SI/O5 Bit Rate Generator ⁽¹⁾	S5BRG	XXh
01ECh	UART0 Special Mode Register 4	U0SMR4	00h
01EDh	UART0 Special Mode Register 3	U0SMR3	000X0X0Xb
01EEh	UART0 Special Mode Register 2	U0SMR2	X000000b
01EFh	UART0 Special Mode Register	U0SMR	X000000b
01F0h	UART1 Special Mode Register 4	U1SMR4	00h
01F1h	UART1 Special Mode Register 3	U1SMR3	000X0X0Xb
01F2h	UART1 Special Mode Register 2	U1SMR2	X000000b
01F3h	UART1 Special Mode Register	U1SMR	X000000b
01F4h	UART2 Special Mode Register 4	U2SMR4	00h
01F5h	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
01F6h	UART2 Special Mode Register 2	U2SMR2	X000000b
01F7h	UART2 Special Mode Register	U2SMR	X000000b
01F8h	UART2 Transmit/Receive Mode Register	U2MR	00h
01F9h	UART2 Bit Rate Generator	U2BRG	XXh
01FAh			XXh
01FBh	UART2 Transmit Buffer Register	U2TB	XXh
01FCh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
01FDh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
	•		XXh
01FEh	UART2 Receive Buffer Register	U2RB —	

X: Undefined

NOTES:

These registers exist only in the 128-pin version.
 The S5TRF and S6TRF bits in the S3456TRR register are used in the 128-pin version.
 The blank areas are reserved and cannot be accessed by users.

M16C/6N Group (M16C/6NL, M16C/6NN)

Table 4.9 SFR Information (9)

Address	Register	Symbol	After Reset
0200h	CAN0 Message Control Register 0	COMCTLO	00h
02001h	CANO Message Control Register 0	COMCTL1	00h
0201h	CANO Message Control Register 2	COMCTL2	00h
020211 0203h	CANO Message Control Register 3	COMCTL3	00h
0203h	CANO Message Control Register 4	COMCTL4	00h
020411 0205h	CANO Message Control Register 5	COMCTL5	00h
0205h	CANO Message Control Register 6	COMCTL6	00h
02061 0207h	CANO Message Control Register 7	COMCTL7	00h
0207h 0208h	CANO Message Control Register 8	COMCTL8	00h
0208h	CANO Message Control Register 9	COMCTL9	00h
020911 020Ah	CANO Message Control Register 10	COMCTL10	00h
020An 020Bh	CANO Message Control Register 11	COMCTL11	00h
	CANO Message Control Register 12	COMCTL12	00h
020Ch 020Dh	CANO Message Control Register 13	COMCTL12	00h
	CANO Message Control Register 14	COMCTL14	00h
020Eh	CANO Message Control Register 15	COMCTL14	00h
020Fh	CANU Message Control Register 15	CONCILIS	X000001b
0210h	CAN0 Control Register	COCTLR	X00000015
0211h	-		
0212h	CAN0 Status Register	COSTR	00h
0213h	.		X000001b
0214h	CAN0 Slot Status Register	COSSTR	00h
0215h			00h
0216h	CAN0 Interrupt Control Register	COICR	00h
0217h			00h
0218h	CAN0 Extended ID Register	COIDR	00h
0219h		001511	00h
021Ah	CAN0 Configuration Register	C0CONR	XXh
021Bh			XXh
021Ch	CAN0 Receive Error Count Register	CORECR	00h
021Dh	CAN0 Transmit Error Count Register	COTECR	00h
021Eh	CAN0 Time Stamp Register	COTSR	00h
021Fh	OANO TIME Stamp negister	001011	00h
0220h			
0221h			
0222h			
0223h			
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
022Eh			
022Fh			
0230h	CANIA Constant Descistor		X000001b
0231h	CAN1 Control Register	C1CTLR	XX0X0000b
0232h			
0233h			
0234h			
0235h			
0236h		1	
0237h		1	
0238h		1	
0239h			
023311		+	
023Ah			
023Ah 023Bh			
023Ah 023Bh 023Ch			
023Ah 023Bh 023Ch 023Dh			
023Ah 023Bh 023Ch			

X: Undefined

NOTE:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.10 SFR Information (10)

Address	Register	Symbol	After Reset
0240h		0,11201	
0241h			
0242h			XXh
0243h	CAN0 Acceptance Filter Support Register	COAFS	XXh
0244h			
0245h			
0246h			
0247h			
0248h			
0249h			
0243h			
024Ah			
024Dh			
0240h			
024Dh 024Eh			
024Eh			
024Ffi 0250h			
0251h			
020111			1
0252h 0253h			
02030			
0254h			
0255h			
0256h			
0257h			
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	00h
025Fh	CAN0 Clock Select Register	CCLKR	00h
0260h			
0261h			
0262h			
0263h			
0264h			
0265h			
0266h			
0267h			
0268h			
0269h			
026Ah			
026Bh			
026Ch			
026Dh			
026Eh			
026Fh			
0270h			
to			1
0372h			1
0373h			
0374h			
0375h			
0376h			
0377h			
0378h			
0379h			
			1
037Ah 037Bh			
037Ch			1
037Dh			
037Eh			
037Fh		I	<u> </u>
X · Undefine			

X: Undefined

NOTE:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.11 SFR Information (11)

0381h Court Start Flag Oh 0381h Clock Prescient Present Flag OKSE Oh 0382h Tides Prescient Present Flag ONSE Oh 0382h Tides Prescient Present Flag ONSE Oh 0382h Tides Prescient Prescint Prescient Prescint Prescient Prescient Prescient	Address	Register	Symbol	After Reset
O381hClock Prescaler Reset FagCPSRFONXXXXX00382hOne-Shel Start FagOneONEOne0384hUpDer Select RegisterTrGSROne0384hUpDer Select RegisterTAOXXh0384hUpDer Select RegisterTAOXXh0384hUpDer Select RegisterTAOXXh0384hTimer AD RegisterTAOXXh0384hTimer AD RegisterTA1XXh0384hTimer AD RegisterTA2XXh0384hTimer AD RegisterTA3XXh0384hTimer AD RegisterTA3XXh0384hTimer AD RegisterTBOXXh0384hTimer BD RegisterTBOXXh0384hTimer BD RegisterTBOXXh0384hTimer BD RegisterTA0MROoh0384hTimer AD Mode RegisterTA0MROoh0384hTimer BD RegisterTA0MROoh0384hTimer AD Mode RegisterTA0MROoh0384hTimer AD Mode RegisterTA0MROoh0384hTimer AD Mode RegisterTA	0380h	Count Start Flag		
Oras She State Hag ONE Onh 0383h Trager Select Register TRGSR 00h 0385h UDF 00h111 0385h Tracer Select Register TA Xh 0385h Timer AD Register TA Xh 0385h Timer AD Register TA1 Xh 0385h Timer AJ Register TA2 XKh 0385h Timer AZ Register TA3 XKh 0385h Timer AJ Register TA3 XKh 0385h Timer AJ Register TA4 XKh 0385h Timer BD Register TA4 XKh 0385h Timer BD Register TB0 XKh 0385h Timer BD Register TA4 XKh 0395h Timer BD Register TA4 XKh 0395h Timer AD Mode Register TA4MR XKh 0395h Timer AD Mode Register TA4MR ODh 0395h Timer AD Mode Register TA4MR ODh 0395h Tim	0381h			0XXXXXXb
10381hTrigger Salect RegisterTRGSR00h0388hUDF00h0388hTmer AD RegisterTAO0388hTimer AD RegisterTAO0388hTimer AD RegisterTAI0388hTimer AD RegisterTAI0398hTimer BD RegisterTBI0398hTimer BD RegisterTBI0398hTimer AD RegisterTAU0398hTimer AD RegisterTAUMR0398hTimer AD Mode Regis	0382h	One-Shot Start Flag		
0338.hUp/Down FlagUDF00h (1)03385.hTimer A0 RegisterTA0XXh03385.hTimer A0 RegisterTA1XXh03385.hTimer A1 RegisterTA1XXh03385.hTimer A2 RegisterTA2XXh03385.hTimer A2 RegisterTA2XXh03385.hTimer A3 RegisterTA2XXh03385.hTimer A3 RegisterTA3XXh03385.hTimer A4 RegisterTA4XXh03385.hTimer B0 RegisterTA4XXh03395.hTimer B0 RegisterTB1XXh03395.hTimer B0 RegisterTB1XXh03395.hTimer B2 RegisterTB1XXh03395.hTimer A0 Mode RegisterTAAMROOh03395.hTimer A4 Mode RegisterTAAMROOh03395.hTimer A2 Mode RegisterTAAMROOh03395.hTimer A4 Mode RegisterTAAMROOh03395.hTimer A4 Mode RegisterTAAMROOh03395.hTimer A4 Mode RegisterTBIMROOXXOOOb03395.hTimer B4 Mode Register	0383h	Trigger Select Register	TRGSR	
0388h 0388h 0388h 0388h 0388hImer A0 RegisterTA0XXh XXh XXh0388h 0388h 0388h 0388h 0388h 0388h 0388hTimer A1 RegisterTA1XXh XXh0388h 0				00h (1)
Jossen Jossen				
Inite AD Register IAU XXh 0388h Timer A1 Register TA1 XXh 0384h Timer A2 Register TA2 XXh 0384h Timer A2 Register TA3 XXh 0385h Timer A3 Register TA3 XXh 0385h Timer A3 Register TA4 XXh 0385h Timer A4 Register TA4 XXh 0385h Timer B0 Register TA4 XXh 0392h Timer B1 Register TB1 XXh 0393h Timer B2 Register TAM XXh 0393h Timer A0 Mode Register TAMR Ooh 0393h Timer A1 Mode Register TAMR Ooh		Timer A0 Degister	TAO	
Jossen Jossen Jossen LangeTA1XXh XXh3038h 1000000000000000000000000000000000000			IAU	
Inter A Progister IA1 XXh 038Ah Timer A2 Register TA2 XXh 038Ch Timer A3 Register TA3 XXh 038Ch Timer A3 Register TA3 XXh 038Ch Timer A4 Register TA4 XXh 038Ch Timer B0 Register TA4 XXh 038Ch Timer B0 Register TB0 XXh 0392h Timer B0 Register TB1 XXh 0392h Timer A0 Mode Register TA4M 00h 0393h Timer A1 Mode Register TA4MR 00h 0393h Timer A0 Mode Register TA4MR 00h 0393h Timer A1 Mode Register TA4MR 00h 0393h Timer A2 Mode Register TA4MR 00h 0393h Timer A3 Mode Register TA4MR 00h 0393h Timer A3 Mode Register TB4MR 00xX0000b 0393h Timer A3 Mode Register TB4MR 00xX0000b 0393h Timer A3 Mode Register TB4MR		Turne M Devictor		XXh
1038Ah 038Bh 038Bh 038Bh 038Bh 1mer A3 RegisterTA2XXh XXh038Bh 038		limer A1 Register	IA1	XXh
OBSER Intel AC Register XA XXh 038Ch Tran A3 Register TA3 XXh 038Ch Tran A4 Register TA4 XXh 038Ch Tran A4 Register TA4 XXh 038Ch Tran B0 Register TB0 XXh 0392h Tran B1 Register TB1 XXh 0393h Tran B2 Register TB1 XXh 0393h Tran B2 Register TAMR 000h 0393h Tran A1 Mode Register TAMR 00h 0393h Timer A2 Mode Register TAMR 00h 0393h Timer A3 Mode Register TAMR 00h 0393h Timer A3 Mode Register TBAMR 00h 0393h Timer A3 Mode Register TBAMR 00h 0393h Timer B1 Mode Register TB2 XXXN 0393h Timer B2 Mode Register TB2SC XXXXX000b 0395h Timer B2 Mode Register TB2SC XXXX000b 0395h Timer B2 Mode Register		Turne AO Devictor		XXh
1038Ch 038Dh 038Dh 1mer A3 RegisterTA3XXh XXh038Dh 038Br 038Br 1mer B0 RegisterTA4XXh039Br 039Br 039Br 039Br 039Br 039Br 039BrTimer B0 RegisterTB0XXh039Br 039Br 039Br 039BrTimer B1 RegisterTB1XXh039Br 039Br 039BrTimer A0 Mode RegisterTB2XXh039Br 039Br 039BrTimer A0 Mode RegisterTA0MR00h039Br 039BrTimer A0 Mode RegisterTA0MR00h039Br 039BrTimer A0 Mode RegisterTAMR00h039Br 039BrTimer A1 Mode RegisterTAMR00h039Br 039BrTimer A2 Mode RegisterTAMR00h039Br 039BrTimer A2 Mode RegisterTAMR00h039Br 039BrTimer A2 Mode RegisterTBMR00XX0000b039Br 039BrTimer B2 Mode RegisterTBMR00XX0000b039Br 039BrTimer B2 Mode RegisterTBMR00XX0000b039Br 039BrTimer B2 Mode RegisterUORRXXh03A1hUARTO Transmit/Receive Mode RegisterUOBRGXXh03A3hUARTO Transmit/Receive Control Register 0UOBRGXXh03A3hUARTO Transmit/Receive Control Register 0UOC000001000b03A5hUARTO Transmit/Receive Control RegisterUORBXXh03A5hUARTO Transmit/Receive Control Register 0UIC00000100b03A6hUARTO Transmit/Receive Control Register 0UIC00000100b		Timer A2 Register	TA2	XXh
Inter A3 HegisterTA3XXh338EhTimer A4 RegisterTA4XXh339DhTimer B0 RegisterTB0XXh339DhTimer B0 RegisterTB1XXh339DhTimer B1 RegisterTB1XXh339DhTimer B1 RegisterTB1XXh339DhTimer B2 RegisterTA0MR00h339DhTimer A1 Mode RegisterTA0MR00h339DhTimer A1 Mode RegisterTA0MR00h339DhTimer A2 Mode RegisterTA0MR00h339DhTimer A2 Mode RegisterTA0MR00h339DhTimer A2 Mode RegisterTA0MR00h339DhTimer A3 Mode RegisterTB0MR00XX0000b339DhTimer B1 Mode RegisterTB1MR00XX0000b339DhTimer B2 Special Mode RegisterTB2SCXXXXXX00b339DhTimer B2 Mode RegisterTB2SCXXXXXX00b339DhTimer B2 Mode RegisterUOMR00h330DhUARTO Transmit Breier RegisterUOMR00h330DhUARTO Transmit Breier RegisterUOGEXXh332DhUARTO Transmit Breier RegisterUOGEXXh332DhUARTO Transmit/Receive Control RegisterUORBXXh334DhUARTO Transmit/Receive Control RegisterUORBXXh334DhUARTO Transmit/Receive Control RegisterUORBXXh334DhUARTO Transmit/Receive Control RegisterUORAWh334DhUARTO Transmit/Receive Control Register <td></td> <td></td> <td></td> <td></td>				
133Eh Timer Al Register TA4 XXh 033Brh Timer BD Register TB0 XXh 033Brh Timer B1 Register TB1 XXh 033Brh Timer B1 Register TB1 XXh 033Brh Timer B1 Register TB1 XXh 033Brh Timer AD Mode Register TA0MR Ooh 033Brh Timer AD Mode Register TA1MR Ooh 033Brh Timer AD Mode Register TA4MR Ooh 033Brh Timer AD Mode Register TB0MR OOXX0000b 033Brh Timer B1 Mode Register TB0MR OOXX0000b 033Brh Timer B2 Mode Register TB2KR OOXX0000b 034Dr Timer B2 Mode Register TB2KR OOXX0000b 035Dr Timer B2 Mode Register TB2KR XXXXX000b <td< td=""><td></td><td>Limer A3 Register</td><td>TA3</td><td></td></td<>		Limer A3 Register	TA3	
Timer A Hongsiter TA4 XXh 03390h Timer BD Register TB0 XXh 03391h Timer B1 Register TB1 XXh 03391h Timer B2 Register TB1 XXh 03391h Timer B2 Register TB1 XXh 03391h Timer A0 Mode Register TAIMR Och 03391h Timer A1 Mode Register TAIMR Och 03391h Timer A2 Mode Register TAIMR Och 03391h Timer A3 Mode Register TAIMR Och 033921h Timer A3 Mode Register TAIMR Och 033921h Timer B3 Mode Register TBIMR OXX0000b 033921h Timer B2 Mode Register TBIMR OXX0000b 033921h UART0 Transmit/Receive Control Register 0 UORE XXh				
10380h 0381h Timer B1 Register Xbh Xbh 0382h Timer B1 Register TB1 Xbh 0383h Timer B1 Register TB1 Xbh 0383h Timer B2 Register TB2 Xbh 0383h Timer B2 Register TB2 Xbh 0383h Timer A0 Mode Register TAOMR Ooh 0384h Timer A2 Mode Register TA2MR Ooh 0384h Timer A3 Mode Register TA2MR Ooh 0384h Timer A4 Mode Register TA2MR Ooh 0384h Timer A5 Mode Register TA2MR Ooh 0384h Timer A5 Mode Register TA4MR Ooh 0384h Timer B1 Mode Register TB2MR 00X0000b 0384h Timer B2 Mode Register TB2MR 00X0000b 0384h Timer B2 Mode Register TB2MR 00X0000b 0384h UARTO TransmitMode Register UOMR 00An 0384h UARTO TransmitMider Register UOBR XXh 03AAH UART		Timer A4 Register	TA4	
Timer BJ Register TB0 Xxh 0332h Timer B1 Register TB1 Xxh 0332h Timer B2 Register TB2 Xxh 0335h Timer A2 Mode Register TAUMR 00h 0337h Timer A3 Mode Register TAUMR 00h 0338h Timer A4 Mode Register TAUMR 00h 0338h Timer A2 Mode Register TAUMR 00h 0338h Timer A3 Mode Register TAUMR 00h 0338h Timer A4 Mode Register TBUMR 00xX0000b 0338h Timer B5 Mode Register TBUMR 00XX0000b 0398h Timer B2 Mode Register TBUMR 00XX0000b 0398h Timer B2 Mode Register TBUMR 00XX0000b 0398h UART0 Transmit/Receive Mode Register UOMR 0h 03Ath UART0 Transmit/Receive Control Register 0 UOC0 00001000b 03Ath UART0 Transmit/Receive Control Register 0 UOC1 00XX0010b 03Ath UART1 Transmit/Receive Control Register 1 UOC1				
3332h 3333h 3333h 3333h 3333h 3333h 1mer Al Mode Register TB1 XXh XXh 3333h 3333h 3333h 3333h 3333h 1mer Al Mode Register TAMR 34MR 00h Ooh 3334h 3333h 1mer Al Mode Register TAMR 00h Ooh 3334h 3334h 1mer Al Mode Register TAMR 00h Ooh 3334h 3334h 1mer Al Mode Register TAMR 00h Ooh 3334h 3334h 1mer Bl Mode Register TBMR 00XX0000b OOh 3334h 1mer Bl Mode Register TBMR 00XX0000b OON 3334h 1mer Bl Mode Register TBMR 00XX0000b OON 3334h 1mer Bl Mode Register TBMR 00XX000b OON 334h 1uer B2 Special Mode Register TBMR 00XX000b OON 334h 1uART0 Transmit/Receive Mode Register UOMR 00h Ooh 334h 1uART0 Transmit/Receive Control Register 0 U0C0 00X000b XXh 000100b0 334h 1uART1 Transmit/Receive Control Register U0RB XXh XXh 334h 1uART1 Transmit/Receive Control Register 0 U0C1 00XX001b XXh 334h 1uART1 Transmit/Receive Control Register 0 U1RB XXh XXh 334h 1uART1 Transmit/Receive Control Register 0 U1RB XXh XXh 334h 1uART1 Transmit/Receive Control Register 0 U1C1 00XX0010b 000h 334h 1uART1 Transmit/Receive Control Register 0 U1C1 00XXh 00h 334h 1uART1 Transmit/R		Timer B0 Register	TB0	
Imer B HegisterTB1XXh0394hTimer B2 RegisterTB2XXh0395hTimer A0 Mode RegisterTA0MR00h0396hTimer A1 Mode RegisterTA1MR00h0396nTimer A2 Mode RegisterTA3MR00h0396nTimer A3 Mode RegisterTA3MR00h0396nTimer A3 Mode RegisterTB0MR00xx000b0396nTimer B4 Mode RegisterTBMR00xx000b0396hTimer B1 Mode RegisterTB1MR00xx000b0396hTimer B2 Mode RegisterTB2MR00xx000b0396hTimer B2 Mode RegisterTB2MR00xx000b0396hTimer B2 Mode RegisterU0MR00h0396hUARTO Transmit/Receive Mode RegisterU0BRGXxh0396hUARTO Transmit/Receive Control Register 0U0BRGXxh034AhUARTO Transmit/Receive Control Register 1U0C00000100b034AhUARTO Transmit/Receive Control Register 1U0C100xx0010b034AhUARTO Transmit/Receive Control Register 1U0C100x00010b034AhUARTO Transmit/Receive Control Register 1U0C100x00010b034AhUARTO Transmit/Receive Control RegisterU1MR00h034AhUARTO Transmit/Receive Control Register 1U1C100xX0010b034AhUARTO Transmit/Receive Control Register 1U1RXxh034AhUARTO Transmit/Receive Control Register 1U1RXxh034AhUARTI Transmit/Receive Control Register 1U1C1 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1334h Timer B2 Register XXh 0395h Timer A0 Mode Register TAOMR 00h 0395h Timer A1 Mode Register TAOMR 00h 0396h Timer A2 Mode Register TAAMR 00h 0396h Timer A2 Mode Register TAAMR 00h 0396h Timer A3 Mode Register TAAMR 00h 0396h Timer A4 Mode Register TAAMR 00h 0396h Timer A5 Mode Register TBOMR 00XX0000b 0396h Timer B2 Mode Register TBMR 00XX0000b 0396h Timer B2 Special Mode Register TBMR 00XX0000b 0396h Timer B2 Special Mode Register UOMR 00h 0340h UARTO Transmit/Receive Mode Register UOBRG XXh 0340h UARTO Transmit/Receive Control Register UOBRG XXh 0344h UARTO Transmit/Receive Control Register UOC0 000X0010b 034Ah UARTO Transmit/Receive Control Register UORB XXh 034Ah UARTI Transmit/Receive Control Registe		Timer B1 Register	TB1	
Timer AD Theor AD Mode Register TAOMR OOh 0396h Timer AD Mode Register TA/MR OOh 0396h Timer BD Mode Register TB/MR OOX0000b 0396h Timer BD Mode Register TB/MR OOX0000b 0396h Timer BD Mode Register TB/MR OOX0000b 0396h Timer BD Mode Register TB/MR OOX000b 0396h UARTO Transmit/Receive Mode Register UOR VXh OO 0304h UARTO Transmit/Receive Control Register UOR XXh OO 0344h UARTO Transmit/Receive Control Register UOR XXh OO 0344h UARTO Receive Eontrol Register UIR <td< td=""><td></td><td></td><td> </td><td></td></td<>				
Timer AU Mode Register TAMR Ooh 0397h Timer A1 Mode Register TA1MR Ooh 0399n Timer A2 Mode Register TA2MR Ooh 0399n Timer A3 Mode Register TA3MR Ooh 0394h Timer A4 Mode Register TA4MR Ooh 0394b Timer A4 Mode Register TB0MR 00XX0000b 0392h Timer B1 Mode Register TB1MR 00XX0000b 0392h Timer B2 Mode Register TB2MR 00XX0000b 0392h Timer B2 Special Mode Register TB2MR 00XX0000b 0392h Timer B2 Special Mode Register UOBR XXX 034h UARTO Transmit/Receive Mode Register UOBR XXh 034Ab UARTO Transmit/Receive Control Register 1 UOC0 00X0010b 03Abh UARTO Transmit/Receive Control Register 1 UOC1 00XX0010b 03Abh UARTO Transmit/Receive Control Register 0 UOC1 00XX0010b 03Abh UARTO Transmit/Receive Control Register 0 UIC0 000X00100b 03Abh		Timer B2 Register	TB2	
Timer A1 Mode Register TA1MR Ooh 0398h Timer A2 Mode Register TA2MR Ooh 0399n Timer A3 Mode Register TA3MR Ooh 0394h Timer A4 Mode Register TA4MR Ooh 0394h Timer A4 Mode Register TB0MR OOX000b 0394b Timer B1 Mode Register TB1MR OOX000b 0394b Timer B2 Mode Register TB2MR OOX000b 0394b Timer B2 Mode Register TB2SC XXXXX00b 0394b UARTO Transmit/Receive Mode Register UOMR OOh 0394b UARTO Transmit/Receive Control Register 0 UOC0 0000100b 0344h UARTO Transmit/Receive Control Register 1 UOC1 00X0010b 0345h UARTO Transmit/Receive Control Register UORB XXh 0344h UARTO Transmit/Receive Control Register UOC0 0000100b 0345h UARTO Transmit/Receive Control Register UORB XXh 0344h UARTO Transmit/Receive Control Register UIRB XXh 0344h		Timer A0 Mode Begister	TAOMP	
Timer A2 Mode Register TA2MR 00h 0399h Timer A3 Mode Register TA3MR 00h 0399h Timer A3 Mode Register TA4MR 00h 0392h1 Timer B1 Mode Register TB1MR 00XX0000b 0392b1 Timer B1 Mode Register TB1MR 00XX0000b 0392b1 Timer B1 Mode Register TB2MR 00XX0000b 0392b1 Timer B2 Mode Register TB2MR 00XX0000b 0392b1 Timer B2 Special Mode Register U0MR 00h 0392b1 Timer B2 Special Mode Register U0MR 00h 034h1 UARTO Transmit/Receive Mode Register U0MR 00h 034h1 UARTO Transmit/Receive Control Register 0 U0C0 0000100b 034b1 UARTO Transmit/Receive Control Register 1 U0C1 00XX0010b 034b1 UARTO Transmit/Receive Control Register 1 U0C1 00XX0010b 034b1 UARTO Transmit/Receive Control Register U1MR 00h 034b1 UARTO Transmit/Receive Mode Register U1MR 00h 034b1 UARTI Transmit/Receive Control Register 0 U1C0 000X0010b 034b1 UARTI Transmit/Receive Control Register 0 U1C0 000001000b 034Ah UARTI Transmit/Receiv				
Timer A3 Mode Register TA3MR Oth 039Ah Timer A4 Mode Register TA4MR Oth 039Bh Timer B0 Mode Register TB0MR 00XX0000b 039Ch Timer B1 Mode Register TB1MR 00XX0000b 039Ch Timer B2 Mode Register TB2MR 00XX0000b 039Ch Timer B2 Mode Register TB2MR 00XX0000b 039Ch Timer B2 Special Mode Register TB2MR 00XX0000b 039Fh Timer B2 Mode Register TB2MR 00XX0000b 039Fh Timer B2 Mode Register UOMR 00h 0341h UARTO Transmit/Receive Mode Register UOMR 00h 03A4h UARTO Transmit/Receive Control Register 0 U0C0 000x0010b 03A4h UARTO Transmit/Receive Control Register UORB XXh 03A4h UARTO Transmit/Receive Control Register UIRG XXh 03A4h UARTO Transmit/Receive Control Register UIRG XXh 03A4h UARTI Transmit/Receive Control Register UIRG XXh 03A4h				
O33Ah Timer AM Mode Register TAAMR Obh 0339Ah Timer B0 Mode Register TB0MR 00XX0000b 039Ch Timer B1 Mode Register TB1MR 00XX0000b 039Dh Timer B2 Mode Register TB2MR 00XX0000b 039Dh Timer B2 Mode Register TB2MR 00XX0000b 039Dh Timer B2 Special Mode Register TB2MR 00XX0000b 039Dh Timer B2 Special Mode Register UOMR 000h 03Ah UARTO Transmit/Receive Mode Register UOMB XXh 03Aah UARTO Transmit/Receive Control Register 0 UOC0 0000100b 03Ash UARTO Transmit/Receive Control Register 1 UOC1 00XX0010b 03Ash UARTO Receive Buffer Register U1MR XXh 03Ash UARTI Transmit/Receive Mode Register U1MR 00h 03Ash UARTI Transmit/Receive Control Register U1MR XXh 03Ash UARTI Transmit/Receive Control Register U1MR Xxh 03Ash UARTI Transmit/Receive Control Register 1 U1C0 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Timer BD Mode Register TBMR 00XX0000b 039Ch Timer BJ Mode Register TB1MR 00XX0000b 039Dh Timer B2 Mode Register TB2MR 00XX0000b 039Dh Timer B2 Special Mode Register TB2SC XXXXXX00b 039Fh Timer B2 Special Mode Register U0MR 00N 039Fh Timer B2 Mode Register U0MR 00h 039Fh Timer B2 Mode Register U0BRG XXh 03A0h UART0 Transmit/Receive Mode Register U0BRG XXh 03A1h UART0 Transmit/Receive Control Register 0 U0C0 0000100b 03A5h UART0 Transmit/Receive Control Register 1 U0C1 00XX001b 03A6h UART1 Transmit/Receive Control Register U1MR 00h 03A6h UART1 Transmit/Receive Mode Register U1MR 00h 03A6h UART1 Transmit/Receive Control Register 0 U1MR 0Xh 03A6h UART1 Transmit/Receive Control Register 1 U1C0 00001000b 03A6h UART1 Transmit/Receive Control Register 2 UCON XXh			-	
039Ch Timer B1 Mode Register TB1MR 00XX0000b 039Dh Timer B2 Mode Register TB2MR 00XX000b 039Eh Timer B2 Special Mode Register TB2SC XXXXX00b 039Fh TB2SE XXXXX00b 00XX000b 039Abh UART0 Transmit/Receive Mode Register U0MR 00h 03Ath UART0 Transmit/Receive Control Register U0TB XXh 03Ash UART0 Transmit/Receive Control Register 0 U0CO 0000100b 03Ash UART0 Transmit/Receive Control Register 1 U0C1 00XXh 03Ash UART0 Transmit/Receive Mode Register U1MR 00h 03Ash UART0 Transmit/Receive Mode Register U1MR 00h 03Ash UART1 Transmit/Receive Mode Register U1MR 00h 03Ash UART1 Transmit/Receive Control Register U1MR 00h 03Ash UART1 Transmit/Receive Control Register 0 U1C1 000X000b 03Abh UART1 Transmit/Receive Control Register 1 U1C1 00XXh 03Abh UART1 Transmit/Receive Control Register 2		Timer A4 Wode Deviator		
Object Timer B2 Mode Register TB2MR 00XX0000b 039Eh Timer B2 Special Mode Register TB2SC XXXXXX00b 039Fh Timer B2 Special Mode Register UOMR OD 030Fh UART0 Transmit/Receive Mode Register UOBRG XXh 03A2h UART0 Transmit/Receive Control Register 0 UOC0 0000100b 03A3h UART0 Transmit/Receive Control Register 0 UOC0 0000100b 03A5h UART0 Receive Control Register 0 UOC0 0000100b 03A7h UART0 Receive Control Register 1 UOC1 00XX0010b 03A7h UART0 Receive Mode Register UIMR ODh 03A8h UART1 Receive Control Register 0 U1C0 000X0010b 03A8h UART1 Transmit/Receive Control Register 0 U1C0 0000000b 03AAh UART1 Transmit/Receive Control Register 1 U1C1 00XX0010b 03AAD UART1 Transmit/Receive Control Register 0 U1C0 00000100b 03ADh UART1 Transmit/Receive Control Register 1 U1C1 00XX0010b 03ADh UART1				
Timer B2 Special Mode RegisterTB2SCXXXXXX00b039Fh00039Ch00039AbUART0 Transmit/Receive Mode Register00MR00h03A1hUART0 Transmit/Beceive Control Register00BRGXXh03A2hUART0 Transmit/Receive Control Register 000C000001000b03A3hUART0 Transmit/Receive Control Register 100C100XX0010b03A3hUART0 transmit/Receive Control Register 100C100XX0010b03A3hUART0 transmit/Receive Mode Register00RBXXh03A3hUART1 transmit/Receive Mode Register01HR00h03A9hUART1 transmit/Receive Mode Register01HR00h03A9hUART1 transmit/Receive Control Register 001TBXXh03A6hUART1 transmit/Receive Control Register 001C000000000b03A9hUART1 transmit/Receive Control Register 101C100XX0010b03A6hUART1 transmit/Receive Control Register 101C100XX0010b03A6hUART1 transmit/Receive Control Register 101C100XX0010b03A9hUART1 transmit/Receive Control Register 2UCONX0000000b03B1hUART1 transmit/Receive Control Register 2UCONX0000000b03B5h000003B4h000003B5h000003B5h000003B5h000003B5h0000<				
039FhImage: constraint of the second sec				
03A0h UART0 Transmit/Receive Mode Register UOMR 00h 03A1h UART0 Bit Rate Generator U0BRG XXh 03A2h UART0 Transmit Buffer Register U0TB XXh 03A3h UART0 Transmit/Receive Control Register 0 U0C0 00001000b 03A6h UART0 Transmit/Receive Control Register 1 U0C1 00XX0010b 03A6h UART0 Receive Buffer Register U0RB XXh 03A6h UART1 Transmit/Receive Mode Register 1 U0RB XXh 03A6h UART1 Transmit/Receive Mode Register U1MR 00h 03A6h UART1 Transmit/Receive Mode Register U1MR 00h 03A8h UART1 Transmit/Receive Control Register 0 U1BRG XXh 03A6h UART1 Transmit/Receive Control Register 0 U1C0 00001000b 03A6h UART1 Transmit/Receive Control Register 0 U1C1 00XX0010b 03A6h UART1 receive Buffer Register U1C1 00XX0010b 03A6h UART1 receive Buffer Register U1C1 00XX0010b 03A6h UART1 receive Control Register 2 UCON X000000b 03B1h I I I 03B3h I I I 03B3h I I I <			18280	XXXXXXUUD
03A1hUART0 Bit Rate GeneratorU0BRGXXh03A2hUART0 Transmit Buffer RegisterU0TBXXh03A3hUART0 Transmit/Receive Control Register 0U0C000001000b03A5hUART0 Transmit/Receive Control Register 1U0C100XX0010b03A6hUART0 Receive Buffer RegisterU0RBXXh03A8hUART0 Receive Buffer RegisterU0RBXXh03A8hUART1 Rate GeneratorU1MR00h03A9hUART1 Bit Rate GeneratorU1BRGXXh03A9hUART1 Transmit/Receive Control Register 0U1C0000X0010b03A0hUART1 Transmit/Receive Control Register 0U1C000001000b03A0hUART1 Transmit/Receive Control Register 1U1C100XX0010b03A2hUART1 Transmit/Receive Control Register 1U1C1000X0010b03A2hUART1 Transmit/Receive Control Register 2UCONX0000000b03A1hUART1 Receive Buffer RegisterU1RBXXh03B0hUART Transmit/Receive Control Register 2UCONX0000000b03B1hIII Receive Buffer RegisterIII Receive Entrol Register 2III Receive Entrol Register 203B3hIII Receive Control Register 2III REIII RE03B3hIII Receive Control Register 2III REIII RE03B3hIII REIII REIII RE03B3hIII REIII REIII RE03B3hIII REIII REIII RE03B3hIII REIII REIII RE03B3hIII RE </td <td></td> <td></td> <td></td> <td>00'</td>				00'
03A2h 03A3hUART0 Transmit Buffer RegisterU0TBXXh XXh03A4hUART0 Transmit/Receive Control Register 0U0C000001000b03A5hUART0 Transmit/Receive Control Register 1U0C100XX0010b03A6hUART0 Receive Buffer RegisterU0RBXXh03A7hUART0 Receive Buffer RegisterU0RBXXh03A8hUART1 Receive Mode RegisterU1MR00h03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A8hUART1 Transmit/Receive Control RegisterU1BGXXh03A8hUART1 Transmit/Receive Control Register 0U1C00000100b03A8hUART1 Transmit/Receive Control Register 1U1C00000100b03A9hUART1 Transmit/Receive Control Register 1U1C100XX0010b03A8hUART1 Transmit/Receive Control Register 2U1RBXXh03A8hUART1 Transmit/Receive Control Register 2UCONX000000b03B1h </td <td></td> <td></td> <td></td> <td></td>				
OAA10DARTO Transmit/Receive Control Register 0DOTBXXh03A3hUARTO Transmit/Receive Control Register 0UOC000001000b03A6hUARTO Transmit/Receive Control Register 1UOC100XX0010b03A6hUARTO Transmit/Receive Mode RegisterUORBXXh03A8hUARTI Transmit/Receive Mode RegisterU1MR00h03A9hUARTI Transmit/Receive Mode RegisterU1MR00h03A9hUARTI Transmit/Receive Mode RegisterU1MR00h03A9hUARTI Transmit/Receive Control Register 0U1C0000001000b03A2hUARTI Transmit/Receive Control Register 1U1C000001000b03A2hUARTI Transmit/Receive Control Register 1U1C100XX0010b03A8hUARTI Receive Buffer RegisterU1RBXXh03A9hUARTI Receive Control Register 2UCONX0000000b03B1h000003B2h000003B3h000003B4h000003B4h000003B4h000003B4h000003B4h000003B4h000003B4h000003B4h000003B4h000003B4h000003B4h000 <td></td> <td>UARIU BIT Hate Generator</td> <td>UOBRG</td> <td></td>		UARIU BIT Hate Generator	UOBRG	
USA3hUART0 Transmit/Receive Control Register 0UOCOXXh03A4hUART0 Transmit/Receive Control Register 1UOC100001000b03A6hUART0 Receive Buffer RegisterUORBXXh03A7hUART0 Receive Buffer RegisterUORBXXh03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A8hUART1 Transmit/Receive Control Register 0U1BRGXXh03A8hUART1 Transmit/Receive Control Register 0U1C000001000b03ADhUART1 Transmit/Receive Control Register 1U1C100XX010b03AFhUART1 Transmit/Receive Control Register 2U1RBXXh03AFhUART1 Receive Buffer RegisterU1RBXXh03AFhUART1 Transmit/Receive Control Register 2UCONX0000000b03B1hVART Transmit/Receive Control Register 2UCONX0000000b03B2hIART Transmit/Receive Control Register 2UCONX0000000b03B2hIART Transmit/Receive Control Register 2UCONX0000000b03B3hIART Transmit/Receive Control Register 2UCONX0000000b03B3hIART Transmit/Receive Control RegisterIARTIART03B4hIART Transmit/Receive Control RegisterIARTIART03B4hIART Transmit/Receive Control RegisterIARTIART03B4hIART Transmit/Receive Control RegisterIARTIART03B4hIART Transmit/Receive Control RegisterIARTIART </td <td></td> <td>UART0 Transmit Buffer Register</td> <td>U0TB -</td> <td></td>		UART0 Transmit Buffer Register	U0TB -	
03A5hUART0 Transmit/Receive Control Register 1U0C100XX0010b03A6hUART0 Receive Buffer RegisterU0RBXXh03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A9hUART1 Transmit/Receive Mode RegisterU1BRGXXh03AAhUART1 Transmit/Receive Control RegisterU1BRGXXh03AAhUART1 Transmit Buffer RegisterU1TBXXh03AAhUART1 Transmit/Receive Control Register 0U1C000001000b03ADhUART1 Transmit/Receive Control Register 1U1C100XX0010b03AFhUART1 Receive Buffer RegisterU1RBXXh03AFhUART1 Receive Control Register 2UCONXXh03B0hUART Transmit/Receive Control Register 2UCONX000000b03B1h03B2h03B3h03B3h03B4h03B5h03B6h03B9h03B9h03B9h03B9h03B9h03B9h03B9h03B9h03B9h03B9h03B9h03B9h03B0h </td <td></td> <td></td> <td>11000</td> <td></td>			11000	
03A6h 03A7hUART0 Receive Buffer RegisterU0RBXXh03A8h 03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A9h 03A9hUART1 Bit Rate GeneratorU1BRGXXh03A4h 03A8hUART1 Transmit Buffer RegisterU1TBXXh03A0h 03A0hUART1 Transmit Buffer RegisterU1TBXXh03A0hUART1 Transmit/Receive Control Register 0U1C000001000b03A0hUART1 Transmit/Receive Control Register 1U1C100XX0010b03A2hUART1 Receive Buffer RegisterU1RBXXh03A5hUART1 Receive Control Register 2UCONX000000b03B1h03B1hImage: Control Register 2UCONX000000b03B2hImage: Control Register 2UCONX000000b03B4hImage: Control Register 2Image: Control Register 2Image: Control Register 203B4hImage: Control Register 2Image: Control Register 2Image: Control Register 203B4hImage: Control Register 2Image: Control Register 2Image: Control Register 203B4hImage: Control Register 2Image: Control Register 2Image: Control Register 203B4hImage: Control Register 2Image: Control Register 2Image: Control Register 2				
OAR10 Hoceive Buffer HegisterOURBXXh03A9hUART1 Transmit/Receive Mode RegisterU1MR00h03A9hUART1 Bit Rate GeneratorU1BRGXXh03A9hUART1 Bit Rate GeneratorU1BRGXXh03A9hUART1 Transmit Buffer RegisterU1TBXXh03A0hUART1 Transmit Buffer Register 0U1C000001000b03A0hUART1 Transmit/Receive Control Register 1U1C100XX0010b03AFhUART1 Receive Buffer RegisterU1RBXXh03AFhUART1 Receive Control Register 2UCONX0000000b03B1h </td <td></td> <td>UARIU Iransmit/Receive Control Register 1</td> <td>0001</td> <td></td>		UARIU Iransmit/Receive Control Register 1	0001	
03A7hXXh03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A9hUART1 Bit Rate GeneratorU1BRGXXh03A8hUART1 Transmit/Receive Control RegisterU1TBXXh03A0hUART1 Transmit/Receive Control Register 0U1C000001000b03AbhUART1 Transmit/Receive Control Register 1U1C100X0010b03AEhUART1 Receive Buffer RegisterU1RBXXh03AFhUART1 Receive Buffer RegisterU1RBXXh03AFhUART Transmit/Receive Control Register 2UCONX000000b03B1hIART Transmit/Receive Control Register 2UCONX000000b03B2hIART Transmit/Receive Control Register 2IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		UART0 Receive Buffer Register	U0RB -	
03A9hUART1 Bit Rate GeneratorU1BRGXXh03AAhUART1 Transmit Buffer RegisterU1TBXXh03ABhUART1 Transmit/Receive Control Register 0U1C000001000b03ADhUART1 Transmit/Receive Control Register 1U1C100XX0010b03AEhUART1 Receive Buffer RegisterU1RBXXh03AFhUART1 Receive Buffer RegisterU1RBXXh03B0hUART Transmit/Receive Control Register 2UCONX0000000b03B1h000003B2h11103B3h11103B6h111 <td></td> <td>6</td> <td></td> <td></td>		6		
O3AAh 03ABhUART1 Transmit Buffer RegisterU1TBXXh03AAb 03AChUART1 Transmit/Receive Control Register 0U1C000001000b03ADhUART1 Transmit/Receive Control Register 1U1C0000X0010b03AEhUART1 Receive Buffer RegisterU1RBXXh03AFhUART Transmit/Receive Control Register 2UCONX000000b03B1h03B2h03B4h03B4h03B4h03B5h03B6h03B7h03B8hDMA0 Request Cause Select RegisterDM0SL00h03B8hDMA1 Request Cause Select RegisterDM1SL00h03B8h </td <td></td> <td></td> <td></td> <td></td>				
O3ABhOART1 transmit Buffer HegisterOTTBXXh03AChUART1 Transmit/Receive Control Register 0U1C000001000b03AChUART1 Transmit/Receive Control Register 1U1C100XX0010b03AEhUART1 Receive Buffer RegisterU1RBXXh03BOhUART Transmit/Receive Control Register 2UCONX0000000b03B1hImage: Control Register 2UCONX0000000b03B2hImage: Control Register 2Image: Control Register 2Image: Control Register 203B2hImage: Control Register 2Image: Control Register 2Image: Control Register 203B2hImage: Control Register 2Image: Control Register 2Image: Control Register 203B2hImage: Control Register 2Image: Control Register 2Image: Control Register 203B3hImage: Control Register 2Image: Control Register 2Image: Control Register 203B4hImage: Control Register 2Image: Control Register 2Image: Control Register 203B5hImage: Control Register 2Image: Control Register 2Image: Control Register 203B6hImage: Control Register 2Image: Control Register 2Image: Control Register 203B6hImage: Control Register 2Image: Control Register 2Image: Control Register 203B6hImage: Control Register 2Image: Control Register 2Image: Control Register 203B6hImage: Control Register 2Image: Control Register 2Image: Control Register 203B6hImage: Control Register 2Image: Control Register 2I		UARI1 Bit Rate Generator	U1BRG	
03ABhCXXh03AChUART1 Transmit/Receive Control Register 0U1C000001000b03ADhUART1 Transmit/Receive Control Register 1U1C100XX0010b03AEhUART1 Receive Buffer RegisterU1RBXXh03B0hUART Transmit/Receive Control Register 2UCONX0000000b03B1h		UART1 Transmit Buffer Register	итв	
03ADhUART1 Transmit/Receive Control Register 1U1C100XX0010b03AEhUART1 Receive Buffer RegisterU1RBXXh03B0hUART Transmit/Receive Control Register 2UCONX000000b03B1h00003B2h0003B3h00003B4h0003B5h0003B5h0003B6h0003B8h00 <t< td=""><td></td><td></td><td></td><td></td></t<>				
03AEh 03AFhUART1 Receive Buffer RegisterX1RBXXh03B0hUART Transmit/Receive Control Register 2UCONX0000000b03B1hUCONX0000000b03B2hII03B2hII03B3hII03B3hII03B4hII03B5hII03B6hII03B7hII03B8hDMA0 Request Cause Select RegisterDMOSL03B9hII03B8hDMA1 Request Cause Select RegisterDM1SL03B8hONA1 Request Cause Select RegisterDM1SL03B8hIII03B8hII03B8hII03B8hII03B8hII03B8hII03B8hII03B8hII03B8hII03B8hII03B8hII03B8hII03B8hII03B8hII03B8hIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
O3AFhOART TReceive Buffer HegisterOTRBXXh03B0hUART Transmit/Receive Control Register 2UCONX0000000b03B1h		UART1 Transmit/Receive Control Register 1	U1C1	
03AFhCXXh03B0hUART Transmit/Receive Control Register 2UCONX0000000b03B1h		UART1 Receive Buffer Begister	U1RB	
03B1hIndextIndext03B2hIndextIndext03B3hIndextIndext03B3hIndextIndext03B4hIndextIndext03B5hIndextIndext03B6hIndextIndext03B6hIndextIndext03B7hIndextIndext03B8hDMA0 Request Cause Select RegisterDM0SL00h03B3hDMA1 Request Cause Select RegisterDM1SL00h03B3hIndextIndextIndext03B4hCRC Data RegisterIndextIndext03B5hCRC Input RegisterCRC Input RegisterXXh03B5hCRC Input RegisterIndextXXh03B5hCRC Input RegisterIndextXXh03B5hIndextIndextIndext03B5hCRC Input RegisterIndextIndext03B5hIndextIndextIndext03B5hCRC Input RegisterIndextIndext03B5hIndextIndextIndext03B5hIndextIndextIndext03B5hIndextIndextIndext03B5hIndextIndextIndext03B5hIndextIndextIndext03B5hIndextIndextIndext03B5hIndextIndextIndext03B5hIndextIndextIndext03B5hIndextIndextIndext03B5hIndextIndextIndext03B				
0382hImage: constraint of the systemImage: constraint of the system0383h0383h0383h0383h0383h0383h0383h0383h0383h0383h0383h0383h0383h0MA0 Request Cause Select Register0MOSL000h0383h0MA1 Request Cause Select Register0MOSL00h0383h0MA1 Request Cause Select Register0M1SL00h0383h0MA1 Request Cause Select Register0M1SL00h0383h0MA1 Request Cause Select Register0M1SL00h0383h0383h00h0383h00h0383h0383h00h00h00h0383h0383h00h00h00h0383h0383h00h00h00h0383h0383h00h00h00h0383h0383h00h00h00h0383h0383h00h00h00h0383h0383h0383h00h00h0383h0383h0383h0383h03830383h0383h0383038303830383h03835000h038300h0383h0383500h00h00h0383h00h00h00h00h0383h00h00h00h00h0384h00h00h00h00h0385h00h00h00h00h0385h00h00h00h00h0385h00h	03B0h	UART Transmit/Receive Control Register 2	UCON	X000000b
03B3hImage: constraint of the systemImage: constraint of the system03B3h03B5hImage: constraint of the systemImage: constraint of the system03B6hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B3hDMA0 Request Cause Select RegisterDM0SL00h03B3hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B3hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B3hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B3hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B3hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B3hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B4Image: constraint of the systemImage: constraint of the systemImage: constraint of the system03B5hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B5hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B5hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B5hImage: constraint of the systemImage: constraint of the systemImage: constraint of the system03B	03B1h			
03B4hImage: constraint of the second sec	03B2h			
03B5hImage: constraint of the systemImage: constraint of the system03B6hImage: constraint of the systemImage: constraint of the system03B7hImage: constraint of the systemImage: constraint of the system03B8hImage: constraint of the systemImage: constraint of the system03B6hImage: constraint of the systemImage: constraint of the system03B7Image: constraint of the systemImage: constraint of the system03B7Image: constraint of the systemImage: constraint of	03B3h			
03B5hImage: constraint of the systemImage: constraint of the system03B6hImage: constraint of the systemImage: constraint of the system03B7hImage: constraint of the systemImage: constraint of the system03B8hImage: constraint of the systemImage: constraint of the system03B6hImage: constraint of the systemImage: constraint of the system03B7Image: constraint of the systemImage: constraint of the system03B7Image: constraint of the systemImage: constraint of	03B4h			
0386h Image: constraint of the second seco				
03B7h				
0388h DMA0 Request Cause Select Register DM0SL 00h 03B9h 00h 00h 03BAh DMA1 Request Cause Select Register DM1SL 00h 03BBh 00h 00h 00h 03BCh CRC Data Register CRCD XXh 03BEh CRC Input Register CRCIN XXh 03BFh CRC Input Register CRCIN XXh				
03B9h DMA1 Request Cause Select Register DM1SL 00h 03BBh DM1SL 00h 03BCh CRC Data Register XXh 03BDh CRC Input Register CRCIN 03BFh CRC Input Register XXh		DMA0 Request Cause Select Register	DM0SL	00h
03BAh DMA1 Request Cause Select Register DM1SL 00h 03BBh 03BCh CRC Data Register XXh 03BDh CRC Input Register CRCIN XXh 03BEh CRC Input Register CRCIN XXh 03BFh CRC Input Register CRCIN XXh				
03BBh 03BCh 03BCh CRC Data Register 03BDh CRC Data Register 03BEh CRC Input Register 03BFh CRC Input Register		DMA1 Request Cause Select Register	DM1SL	00h
03BCh CRC Data Register XXh 03BDh CRC Input Register XXh 03BEh CRC Input Register CRCIN 03BFh CRC Input Register CRCIN				
O3BDh CRC Data Hegister XXh 03BEh CRC Input Register CRCIN XXh 03BFh CRC Input Register CRCIN XXh				XXh
03BEh CRC Input Register XXh 03BFh CRCIN XXh		CRC Data Register	CRCD	
03BFh		CBC Input Register	CRCIN	
		L	L L	

X: Undefined

NOTES:

The TA2P to TA4P bits in the UDF register are set to "0" after reset. However, the contents in these bits are indeterminate when read.
 The blank areas are reserved and cannot be accessed by users.

Table 4.12 SFR Information (12)

Address	Register	Symbol	After Reset
03C0h		í	XXh
03C1h	A/D Register 0	AD0	XXh
03C2h			XXh
03C3h	A/D Register 1	AD1	XXh
03C4h		400	XXh
03C5h	A/D Register 2	AD2	XXh
03C6h	A/D Register 3	AD3	XXh
03C7h	A/D negister 3	AD3	XXh
03C8h	A/D Register 4	AD4	XXh
03C9h		7,04	XXh
03CAh	A/D Register 5	AD5	XXh
03CBh		-	XXh XXh
03CCh	A/D Register 6	AD6	XXh
03CDh 03CEh			XXh
03CEn 03CFh	A/D Register 7	AD7	XXh
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	00h
03D5h			
03D6h	A/D Control Register 0	ADCON0	00000XXXb
03D7h	A/D Control Register 1	ADCON1	00h
03D8h	D/A Register 0	DA0	00h
03D9h			
03DAh	D/A Register 1	DA1	00h
03DBh		DAGON	001
03DCh	D/A Control Register	DACON	00h
03DDh	Port P14 Control Register (1)	PC14	XX00XXXXb
03DEh 03DFh	Pull-Up Control Register 3 ⁽¹⁾	PUR3	00h
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EBh	Port P5 Direction Register	PD5	00h
03ECh	Port P6 Register Port P7 Register	P6 P7	XXh XXh
03EDh 03EEh	Port P7 Register Port P6 Direction Register	P7 PD6	00h
03EEh	Port Po Direction Register	PD6 PD7	00h
03EFI	Port P8 Register	P8	XXh
03F1h	Port P9 Register	P9	XXh
03F2h	Port P8 Direction Register	PD8	00X0000b
03F3h	Port P9 Direction Register	PD9	00h
03F4h	Port P10 Register	P10	XXh
03F5h	Port P11 Register (1)	P11	XXh
03F6h	Port P10 Direction Register	PD10	00h
03F7h	Port P11 Direction Register ⁽¹⁾	PD11	00h
03F8h	Port P12 Register (1)	P12	XXh
03F9h	Port P13 Register ⁽¹⁾	P13	XXh
03FAh	Port P12 Direction Register (1)	PD12	00h
03FBh	Port P13 Direction Register (1)	PD13	00h
03FCh	Pull-up Control Register 0	PUR0	00h
03FDh	Pull-up Control Register 1 Pull-up Control Register 2	PUR1 PUR2	00h 00h
03FEh 03FFh	Pull-up Control Register 2 Port Control Register	POR2 PCR	00h
USELU		FUN	

X: Undefined

NOTES: 1. These registers exist only in the128-pin version. 2. The blank areas are reserved and cannot be accessed by users.

5. Reset

Hardware reset, software reset, watchdog timer reset and oscillation stop detection reset are available to reset the microcomputer.

5.1 Hardware Reset

The microcomputer resets pins, the CPU and SFR by setting the RESET pin. If the supply voltage meets the recommended operating conditions, the microcomputer resets all pins when an "L" signal is applied to the RESET pin (see **Table 5.1 Pin Status When RESET Pin Level is "L"**). The oscillation circuit is also reset and the main clock starts oscillation. The microcomputer resets the CPU and SFR when the signal applied to the RESET pin changes low ("L") to high ("H"). The microcomputer executes the program in an address indicated by the reset vector. The internal RAM is not reset. When an "L" signal is applied to the RESET pin while writing data to the internal RAM, the internal RAM is in an indeterminate state.

Figure 5.1 shows an example of the reset circuit. Figure 5.2 shows a reset sequence. Table 5.1 lists pin states while the RESET pin is held low ("L"). Figure 5.3 shows CPU register states after reset. Refer to **4. SFR** for SFR states after reset.

5.1.1 Reset on a Stable Supply Voltage

- (1) Apply "L" to the RESET pin
- (2) Apply 20 or more clock cycles to the XIN pin
- (3) Apply "H" to the RESET pin

5.1.2 Power-on Reset

- (1) Apply "L" to the RESET pin
- (2) Raise the supply voltage to the recommended operating level
- (3) Insert td(P-R) ms as wait time for the internal voltage to stabilize
- (4) Apply 20 or more clock cycles to the XIN pin
- (5) Apply "H" to the RESET pin

5.2 Software Reset

The microcomputer resets pins, the CPU and SFR when the PM03 bit in the PM0 register is set to "1" (microcomputer reset). Then the microcomputer executes the program in an address determined by the reset vector. Set the PM03 bit to "1" while the main clock is selected as the CPU clock and the main clock oscillation is stable. In the software reset, the microcomputer does not reset a part of the SFR. Refer to **4. SFR** for details.

5.3 Watchdog Timer Reset

The microcomputer resets pins, the CPU and SFR when the PM12 bit in the PM1 register is set to "1" (reset when watchdog timer underflows) and the watchdog timer underflows. Then the microcomputer executes the program in an address determined by the reset vector.

In the watchdog timer reset, the microcomputer does not reset a part of the SFR. Refer to 4. SFR for details.

5.4 Oscillation Stop Detection Reset

The microcomputer resets and stops pins, the CPU and SFR when the CM27 bit in the CM2 register is "0" (reset at oscillation stop, re-oscillation detection), if it detects main clock oscillation circuit stop. Refer to **7.5 Oscillation Stop and Re-Oscillation Detection Function** for details.

In the oscillation stop detection reset, the microcomputer does not reset a part of the SFR. Refer to **4. SFR** for details.

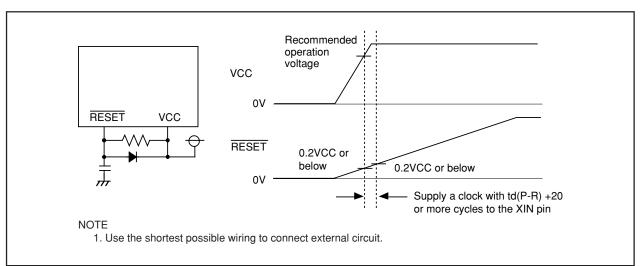


Figure 5.1 Example Reset Circuit

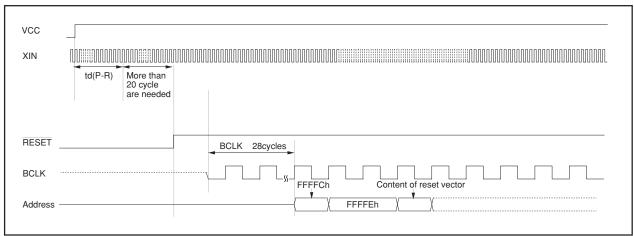


Figure 5.2 Reset Sequence

Table 5.1 Pin Status When RESET Pin Level is "L"

Pin Name	Status (CNVSS = VSS)
P0, P1, P2, P3, P4, P5, P6, P7,	Input port
P8_0 to P8_4, P8_6, P8_7, P9, P10,	
P11, P12, P13, P14_0, P14_1 ⁽²⁾	

NOTE:

1. P11, P12, P13, P14_0 and P14_1 pins are only in the 128-pin version.

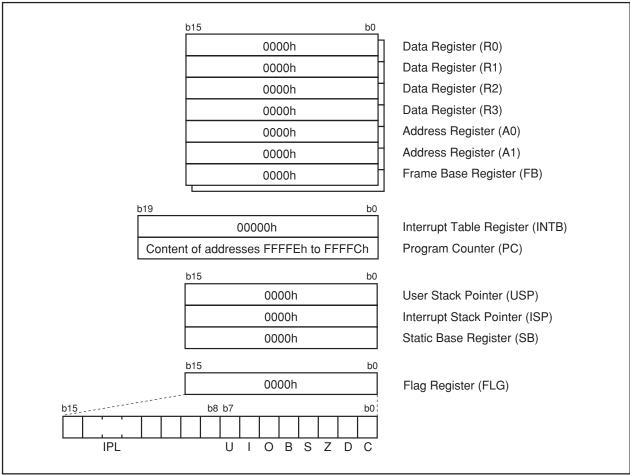


Figure 5.3 CPU Register Status After Reset

6. Processor Mode

Three processor mode is available single-chip mode only. Figures 6.1 and 6.2 show the processor mode related registers. Figure 6.3 shows the memory map.

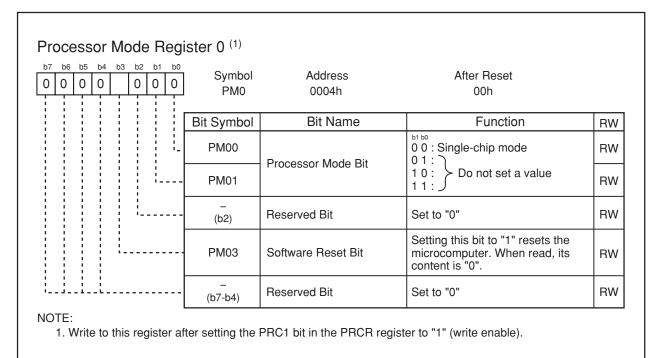


Figure 6.1 PM0 Register

Processor Mode Reg	ister 1 ⁽¹⁾			
b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0	Symbol PM1	Address 0005h	After Reset 00001000b	
	Bit Symbol	Bit Name	Function	RW
	PM10	Data Block Enable Bit ⁽²⁾	0 : Block A disable 1 : Block A enable	RW
	- (b1)	Reserved Bit	Set to "0"	RW
	PM12	Watchdog Timer Function Select Bit	0 : Watchdog timer interrupt 1 : Watchdog timer reset ⁽³⁾	RW
	PM13	Internal Reserved Area Expansion Bit ⁽⁴⁾	See NOTE 6	RW
l	_ (b6-b4)	Reserved Bit	Set to "0"	RW
L	PM17	Wait Bit ⁽⁵⁾	0 : No wait state 1 : With wait state (1 wait)	RW
2. Set the PM10 bit to "0 For the flash memory	" for Mask RON version, when t addition, the PN	he PM10 bit is set to "1", add	er to "1" (write enable). dresses 0F000h to 0FFFFh can be 1" while the FMR01 bit in the FMR0	

- 3. The PM12 bit is set to "1" by writing a "1" in a program. (writing a "0" has no effect.)
- 4. Be sure to set this bit to "0" except for products with internal ROM area over 192 Kbytes.
- The PM13 bit is automatically set to "1" when the FMR01 bit is "1" (CPU rewrite mode).
- 5. When the PM17 bit is set to "1" (with wait state), one wait state is inserted when accessing the internal RAM or internal ROM.
- 6. The access area is changed by the PM13 bit as listed in the table below.

Access area		PM13 = 0	PM13 = 1
	RAM	Up to addresses 00400h to 03FFFh (15 Kbytes)	The entire are is usable
Internal	ROM	Up to addresses D0000h to FFFFh (192 Kbytes)	The entire are is usable

Figure 6.2 PM1 Register

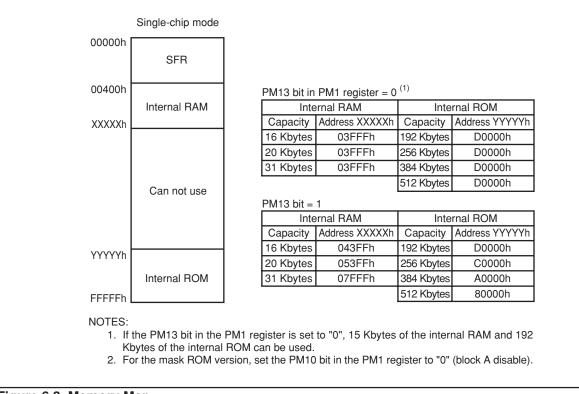
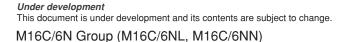


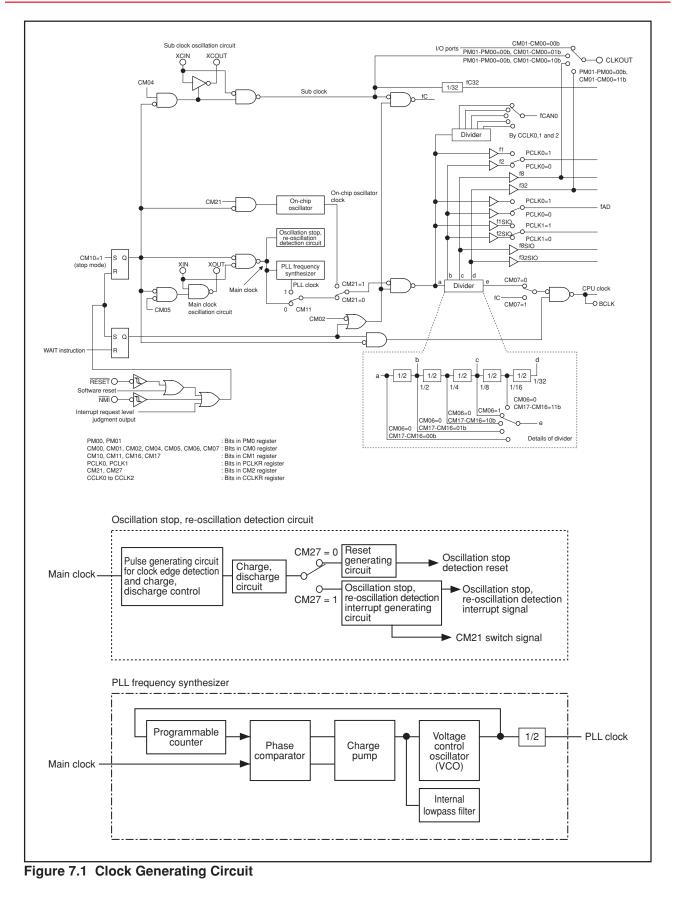
Figure 6.3 Memory Map

7. Clock Generating Circuit

7.1 Types of Clock Generating Circuit

Four circuits are incorporated to generate the system clock signal:


- Main clock oscillation circuit
- Sub clock oscillation circuit
- On-chip oscillator
- PLL frequency synthesizer


Table 7.1 lists the clock generating circuit specifications. Figure 7.1 shows the clock generating circuit. Figures 7.2 to 7.8 show the clock-related registers.

Item	Main Clock Oscillation Circuit	Sub Clock Oscillation Circuit	On-chip Oscillator	PLL Frequency Synthesizer
Use of Clock	 CPU clock source Peripheral function clock source 	 CPU clock source Clock source of Timer A, B 	 CPU clock source Peripheral function clock source CPU and peripheral function clock sources when the main clock stops oscillating 	 CPU clock source Peripheral function clock source
Clock	0 to 16 MHz	32.768 kHz	About 1 MHz	16 MHz, 20 MHz,
Frequency				24 MHz
Usable	 Ceramic oscillator 	 Crystal oscillator 	-	-
Oscillator	 Crystal oscillator 			
Pins to Connect	XIN, XOUT	XCIN, XCOUT	-	-
Oscillator				
Oscillation Stop and Re-Oscillation Detection Function	Available	Available	Available	Available
Oscillation Status After Reset	Oscillating	Stopped	Stopped	Stopped
Other	Externally derived clo	ock can be input	-	-

Table 7.1 Clock Generating Circuit Specifications

RENESAS

	Symbol CM0	Address 0006h	After Reset 01001000b	
	Bit Symbol	Bit Name	Function	RW
	CM00	Clock Output Function Select Bit	0 0 : I/O port P5_7 0 1 : fC output	RW
	CM01	(Valid only in single-chip mode)	1 0 : f8 output 1 1 : f32 output	RW
· · · · · · · · · · · · · · · · · · ·	CM02	WAIT Mode Peripheral Function Clock Stop Bit	 0 : Do not stop peripheral function clock in wait mode 1 : Stop peripheral function clock in wait mode ⁽²⁾ 	RW
	CM03	XCIN-XCOUT Drive Capacity Select Bit ⁽³⁾	0 : LOW 1 : HIGH	RV
	CM04	Port XC Select Bit (3)	0 : I/O port P8_6, P8_7 1 : XCIN-XCOUT generation function ⁽⁴⁾	RW
	CM05	Main Clock Stop Bit (5) (6) (7)	0 : On 1 : Off ⁽⁸⁾ ⁽⁹⁾	RW
	CM06	Main Clock Division Select Bit 0 ⁽⁷⁾ (10) (12)	0 : CM16 and CM17 valid 1 : Division by 8 mode	RV
	CM07	System Clock Select Bit ^{(6) (11)}	0 : Main clock, PLL clock, or on-chip oscillator clock 1 : Sub clock	RV

NOTES:

1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).

- 2. The fC32 clock does not stop. During low-speed or low power dissipation mode, do not set this bit to "1" (peripheral clock turned off when in wait mode).
- 3. The CM03 bit is set to "1" (high) while the CM04 bit is set to "0" (I/O port) or when entered to stop mode.
- 4. To use a sub clock, set this bit to "1". Also make sure ports P8_6 and P8_7 are directed for input, with no pull-ups.
- 5. This bit is provided to stop the main clock when the low power dissipation mode or on-chip oscillator low power dissipation mode is selected. This bit cannot be used for detection as to whether the main clock stopped or not. To stop the main clock, set bits in the following order.
 - (1) Set the CM07 bit to "1" (sub clock select) or the CM21 bit in the CM2 register to "1" (on-chip oscillator select) with the sub clock stably oscillating.
 - (2) Set the CM20 bit in the CM2 register to "0" (oscillation stop, re-oscillation detection function disabled).(3) Set the CM05 bit to "1" (stop).
- 6. To use the main clock as the clock source for the CPU clock, set bits in the following order.
 - (1) Set the CM05 bit to "0" (oscillate)
 - (2) Wait until the main clock oscillation stabilizes.
 - (3) Set the CM11, CM21 and CM07 bits all to "0".
- 7. When the CM21 bit = 0 (on-chip oscillator turned off) and the CM05 bit = 1 (main clock turned off), the CM06 bit is fixed to "1" (divide-by-8 mode) and the CM15 bit is fixed to "1" (drive capability High).
- 8. During external clock input, set the CM05 bit to "0" (oscillate).
- 9. When the CM05 bit is set to "1", the XOUT pin goes "H". Furthermore, because the internal feedback resistor remains connected, the XIN pin is pulled "H" to the same level as XOUT via the feedback resistor.
- 10. When entering stop mode from high- or medium-speed mode, on-chip oscillator mode or on-chip oscillator low power dissipation mode, the CM06 bit is set to "1" (divide-by-8 mode).
- 11. After setting the CM04 bit to "1" (XCIN-XCOUT oscillator function), wait until the sub clock oscillates stably before switching the CM07 bit from "0" to "1" (sub clock).
- 12. To return from on-chip oscillator mode to high-speed or medium-speed mode, set the CM06 and CM15 bits both to "1".

Figure 7.2 CM0 Register

b6 b5	5 b4	b3 0	b2 b1 b0] Symbol CM1	Address 0007h	After Reset 00100000b	
				Bit Symbol	Bit Name	Function	RW
				CM10	All Clock Stop Control Bit ^{(2) (3)}	0 : Clock on 1 : All clocks off (stop mode)	RW
				CM11	System Clock Select Bit 1 (4)	0 : Main clock 1 : PLL clock ⁽⁵⁾	RW
				_ (b4-b2)	Reserved Bit	Set to "0"	RW
				CM15	XIN-XOUT Drive Capacity Select Bit ⁽⁶⁾	0 : LOW 1 : HIGH	RW
				CM16	Main Clock Division	0 0 : No division mode 0 1 : Division by 2 mode	RW
				CM17	Select Bit 1 ⁽⁷⁾	1 0 : Division by 4 mode 1 1 : Division by 16 mode	RW

- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable)
- 2. If the CM10 bit is "1" (stop mode), XOUT goes "H" and the internal feedback resistor is disconnected. The XCIN and XCOUT pins are placed in the high-impedance state. When the CM11 bit is set to "1" (PLL clock), or the CM20 bit in the CM2 register is set to "1" (oscillation stop, re-oscillation detection function enabled), do not set the CM10 bit to "1".
- 3. When the PM22 bit in the PM2 register is set to "1" (watchdog timer count source is on-chip oscillator clock), writing to the CM10 bit has no effect.
- 4. Effective when the CM07 bit is "0" and the CM21 bit is "0".
- 5. After setting the PLC07 bit in the PLC0 register to "1" (PLL operation), wait until tsu(PLL) elapses before setting the CM11 bit to "1" (PLL clock).
- 6. When entering stop mode from high- or medium-speed mode, or when the CM05 bit is set to "1" (main clock turned off) in low-speed mode, the CM15 bit is set to "1" (drive capability high).
- 7. Effective when the CM06 bit is "0" (CM16 and CM17 bits enabled).

Figure 7.3 CM1 Register

Oscillation Stop Dete	ction Regis	ter ⁽¹⁾		
b7 b6 b5 b4 b3 b2 b1 b0	Symbol CM2	Address 000Ch	After Reset 0X000000b ⁽²⁾	
	Bit Symbol	Bit Name	Function	RW
	CM20	Oscillation Stop, Re-Oscillation Detection Enable Bit ^{(2) (3) (4)}	 0 : Oscillation stop, re-oscillation detection function disabled 1 : Oscillation stop, re-oscillation detection function enabled 	RW
	CM21	System Clock Select Bit 2 (2) (5) (6) (7) (8) (11)	0 : Main clock or PLL clock 1 : On-chip oscillator clock (On-chip oscillator oscillating)	RW
	CM22	Oscillation Stop, Re-Oscillation Detection Flag ⁽⁹⁾	 0 : Main clock stop, re-oscillation not detected 1 : Main clock stop, re-oscillation detected 	RW
	CM23	XIN Monitor Flag (10)	0 : Main clock oscillating 1 : Main clock turned off	RO
	(b5-b4)	Reserved Bit	Set to "0"	RW
	- (b6)	Nothing is assigned. When When read, its content is in		-
 	CM27	Operation Select Bit (behavior if oscillation stop, re-oscillation is detected) ⁽²⁾	0 : Oscillation stop detection reset1 : Oscillation stop, re-oscillation detection interrupt	RW

NOTES:

- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- 2. The CM20, CM21 and CM27 bits do not change at oscillation stop detection reset.
- 3. Set the CM20 bit to "0" (disable) before entering stop mode. After exiting stop mode, set the CM20 bit back to "1" (enable).
- 4. Set the CM20 bit to "0" (disable) before setting the CM05 bit in the CM0 register.
- 5. When the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), and the CPU clock source is the main clock, the CM21 bit is set to "1" (on-chip oscillator clock) if the main clock stop is detected.
- 6. If the CM20 bit is "1" and the CM23 bit is "1" (main clock turned off), do not set the CM21 bit to "0".
- 7. Effective when the CM07 bit in the CM0 register is "0".
- 8. Where the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), and the CM11 bit is "1" (the CPU clock source is PLL clock), the CM21 bit remains unchanged even when main clock stop is detected. If the CM22 bit is "0" under these conditions, an oscillation stop, re-oscillation detection interrupt request is generated at main clock stop detection; it is, therefore, necessary to set the CM21 bit to "1" (on-chip oscillator clock) inside the interrupt routine.
- 9. This bit is set to "1" when the main clock is detected to have stopped and when the main clock is detected to have restarted oscillating. When this bit changes state from "0" to "1", an oscillation stop and re-oscillation detection interrupt request is generated. Use this bit in an interrupt routine to discriminate the causes of interrupts between the oscillation stop and re-oscillation detection interrupt and the watchdog timer interrupt. This bit is set to "0" by writing "0" in a program. (Writing "1" has no effect. Nor is it set to "0" by an oscillation stop, re-oscillation detection interrupt request acknowledged.)

If an oscillation stop or a re-oscillation is detected when the CM22 bit = 1, no oscillation stop and re-oscillation detection interrupt requests are generated.

- 10. Read the CM23 bit in an oscillation stop and re-oscillation detection interrupt handling routine to determine the main clock status.
- 11. When the CM21 bit = 0 (on-chip oscillator turned off) and the CM05 bit = 1 (main clock turned off), the CM06 bit is fixed to "1" (divide-by-8 mode) and the CM15 bit is fixed to "1" (drive capability High).

Figure 7.4 CM2 Register

Peripheral Clock Sele	ect Registe	r ⁽¹⁾		
b7 b6 b5 b4 b3 b2 b1 b0	Symbol PCLKR		Reset 0h	
	Bit Symbol	Bit Name	Function	RW
	PCLK0	Timers A, B, and A/D Clock Select Bit (Clock source for the timers A, B, the dead time timer and A/D)	0 : Divide-by-2 of fAD, f2 1 : fAD, f1	RW
	PCLK1	SI/O Clock Select Bit (Clock source for UART0 to UART2, SI/O3 to SI/O6) ⁽⁵⁾	0 : f2SIO 1 : f1SIO	RW
	(b4-b2)	Reserved Bit	Set to "0"	RW
	PCLK5	Pin Function Swirch Bit	0: Normal mode 1: Swiching mode ⁽⁴⁾	RW
	PCLK6	Software Interrupt Number/SFR Location Switch Bit	0: Normal mode 1: Swiching mode ⁽²⁾	RW
	PCLK7	A/D Clock Direct Input Bit	0: Normal mode 1: Swiching mode ⁽³⁾	RW
NOTES:				

1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).

2. If this bit is set to "1", the software interrupt number and SFR location can be changed as follows.

(1) Software interrupt number of the key input interrupt in the vector table can be changed from 14 to 13.

- No.13 is changed from the CAN0 error interrupt to the CAN0 error/key input interrupt.
- No.14 is changed from the A/D/key input interrupt to the A/D interrupt.

(2) Address of the KUPIC register in the SFR can be changed from 004Eh to 004Dh.

- Address 004Dh is changed from the C01ERRIC register to the C01ERRIC/KUPIC register.

- Address 004Eh is changed from the ADIC/KUPIC register to the ADIC register.

3. When this bit = 1, the A/D clock is set to divide-by-1 of fAD mode regardless of whether the PCLK0 bit is set.

4. When the PCLK5 bit and the SM43 bit in the S4C register = 1, the pin function of SI/O4 can be changed as follows.

• P8_0/TA4OUT/U/(SIN4)

• P7_5/TA2IN/W/(SOUT4)

• P7_4/TA2OUT/W/(CLK4)

5. SI/O5 and SI/O6 are only in the 128-pin version.

Figure 7.5 PCLKR Register

b6 b5 b4 b3 b2 b1 b0 0<	Symbol CCLKR	Address 025Fh	After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	CCLK0		0 0 0 No division 0 0 1 : Divide-by-2	RW
	CCLK1	CAN0 Clock Select Bits (2)	0 1 0 : Divide-by-4 0 1 1 : Divide-by-8 1 0 0: Divide-by-16	RW
	CCLK2		101: 110: 1111: Do not set a value	RW
	CCLK3	CAN0 CPU Interface Sleep Bit ⁽³⁾	0: CAN0 CPU interface operating 1: CAN0 CPU interface in sleep	RW
· · · · · · · · · · · · · · · · · · ·	_ (b6-b4)	Reserved Bit	Set to "0"	RW
	_ (b7)	Reserved Bit	Set to "1"	RW

1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (Write enabled).

2. Set to this bit after setting the C1CTLR register to "0020h", and set only when the Reset bit in the C0CTLR register = 1 (Reset/Initialization mode).

3. Before setting this bit to "1", set the Sleep bit in the COCTLR register to "1" (Sleep mode enabled).

Figure 7.6 CCLKR Register

Processor Mode Regi	ster 2 ⁽¹⁾			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol PM2		After Reset (XX00000b	
	Bit Symbol	Bit Name	Function	RW
	PM20	Specifying Wait when Accessing SFR at PLL Operation ⁽²⁾	0 : 2 waits 1 : 1 wait	RW
	(b1)	Reserved Bit	Set to "0"	RW
	PM22	WDT Count Source Protective Bit ^{(3) (4)}	 0 : CPU clock is used for the watchdog timer count source 1 : On-chip oscillator clock is used for the watchdog timer count source 	RW
	_ (b4-b3)	Reserved Bit	Set to "0"	RW
	- (b7-b5)	Nothing is assigned. When write, set to "0". When read, their contents are indeterminate.		-
 2. The PM20 bit become e bit when the PLC07 bit 3. Once this bit is set to " 4. Setting the PM22 bit to • The on-chip oscillator s 	effective when t t is set to "0" (F 1", it cannot be "1" results in starts oscillating	PLL off). Set the PM20 bit t " e set to "0" in a program. the following conditions: , and the on-chip oscillator cloo	ter to "1" (write enable). ister is set to "1" (PLL on). Change the 0" (2 waits) when PLL clock > 16MH: ck becomes the watchdog timer count so a "1" has no effect, nor is stop mode ent	z. ource.

• The watchdog timer does not stop when in wait mode or hold state.

Figure 7.7 PM2 Register

RENESAS

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Symbol PLC0	Address 001Ch	After Reset 0001X010b	
	Bit Symbol	Bit Name	Function	RW
	PLC00		0 0 0 : Do not set a value 0 0 1 : Multiply by 2	RW
	PLC01	PLL Multiplying Factor Select Bit ⁽²⁾	0 1 0 : Multiply by 4 0 1 1 : Multiply by 6 1 0 0 :	RW
· · · · · · · · · · · · · · · · · · ·	PLC02		101: 110: 1111: Do not set a value	RW
	_ (b3)	Nothing is assigned. Whe When read, its content is in		-
	_ (b4)	Reserved Bit	Set to "1"	RW
	- (b6-b5)	Reserved Bit	Set to "0"	RW
	PLC07	Operation Enable Bit (3)	0 : PLL Off 1 : PLL On	RW

NOTES:

- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- 2. This bit can only be modified when the PLC07 bit = 0 (PLL turned off). The value once written to this bit cannot be modified.
- 3. Before setting this bit to "1", set the CM07 bit in the CM0 register to "0" (main clock), set the CM17 to CM16 bits in the CM1 register to "00b" (main clock undivided mode), and set the CM06 bit in the CM0 register to "0" (CM16 and CM17 bits enable).

Figure 7.8 PLC0 Register

The following describes the clocks generated by the clock generating circuit.

7.1.1 Main Clock

The main clock is generated by the main clock oscillation circuit. This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillator circuit is configured by connecting a resonator between the XIN and XOUT pins. The main clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The main clock oscillator circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 7.9 shows the examples of main clock connection circuit. After reset, the main clock divided by 8 is selected for the CPU clock.

The power consumption in the chip can be reduced by setting the CM05 bit in the CM0 register to "1" (main clock oscillator circuit turned off) after switching the clock source for the CPU clock to a sub clock or on-chip oscillator clock. In this case, XOUT goes "H". Furthermore, because the internal feedback resistor remains on, XIN is pulled "H" to XOUT via the feedback resistor. Note, that if an externally generated clock is fed into the XIN pin, the main clock cannot be turned off by setting the CM05 bit to "1" unless the sub clock is selected as a CPU clock. If necessary, use an external circuit to turn off the clock. During stop mode, all clocks including the main clock are turned off. Refer to **7.4 Power Control**.

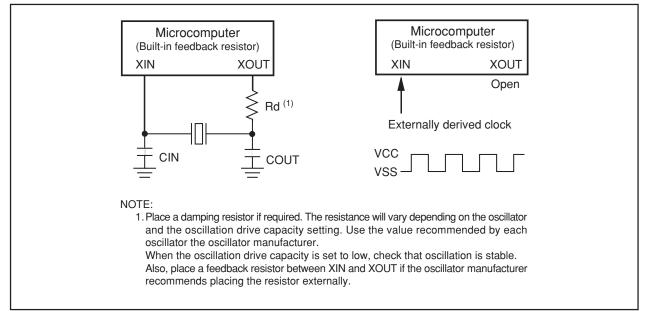


Figure 7.9 Examples of Main Clock Connection Circuit

7.1.2 Sub Clock

The sub clock is generated by the sub clock oscillation circuit. This clock is used as the clock source for the CPU clock, as well as the timer A and timer B count sources. In addition, an fC clock with the same frequency as that of the sub clock can be output from the CLKOUT pin.

The sub clock oscillator circuit is configured by connecting a crystal resonator between the XCIN and XCOUT pins. The sub clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The sub clock oscillator circuit may also be configured by feeding an externally generated clock to the XCIN pin. Figure 7.10 shows the examples of sub clock connection circuit.

After reset, the sub clock is turned off. At this time, the feedback resistor is disconnected from the oscillator circuit.

To use the sub clock for the CPU clock, set the CM07 bit in the CM0 register to "1 " (sub clock) after the sub clock becomes oscillating stably.

During stop mode, all clocks including the sub clock are turned off. Refer to 7.4 Power Control.

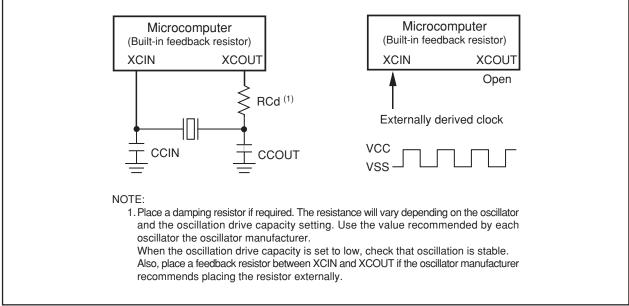


Figure 7.10 Examples of Sub Clock Connection Circuit

7.1.3 On-chip Oscillator Clock

This clock, approximately 1 MHz, is supplied by a on-chip oscillator. This clock is used as the clock source for the CPU and peripheral function clocks. In addition, if the PM22 bit in the PM2 register is "1" (on-chip oscillator clock for the watchdog timer count source), this clock is used as the count source for the watchdog timer (refer to **10.1 Count Source Protective Mode**).

After reset, the on-chip oscillator is turned off. It is turned on by setting the CM21 bit in the CM2 register to "1" (on-chip oscillator clock), and is used as the clock source for the CPU and peripheral function clocks, in place of the main clock. If the main clock stops oscillating when the CM20 bit in the CM2 register is "1" (oscillation stop, re-oscillation detection function enabled) and the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), the on-chip oscillator automatically starts operating, supplying the necessary clock for the microcomputer.

7.1.4 PLL Clock

The PLL clock is generated by a PLL frequency synthesizer. This clock is used as the clock source for the CPU and peripheral function clocks. After reset, the PLL clock is turned off. The PLL frequency synthesizer is activated by setting the PLC07 bit to "1" (PLL operation). When the PLL clock is used as the clock source for the CPU clock, wait a fixed period of tsu(PLL) for the PLL clock to be stable, and then set the CM11 bit in the CM1 register to "1".

Before entering wait mode or stop mode, be sure to set the CM11 bit to "0" (CPU clock source is the main clock). Furthermore, before entering stop mode, be sure to set the PLC07 bit in the PLC0 register to "0" (PLL stops). Figure 7.11 shows the procedure for using the PLL clock as the clock source for the CPU. The PLL clock frequency is determined by the equation below.

PLL clock frequency = $f(XIN) \times (multiplying factor set by the PLC02 to PLC00 bits in the PLC0 register)$ (However, PLL clock frequency = 16 MHz, 20 MHz or 24 MHz)

The PLC02 to PLC00 bits can be set only once after reset. Table 7.2 shows the example for setting PLL clock frequencies.

	Table Tiz Example for betting I EE block i requeitores										
XIN (MHz)	PLC02	PLC01	PLC00	Multiply Factor	PLL Clock (MHz) ⁽¹⁾						
8	0	0	1	2	16						
4	0	1	0	4	10						
10	0	0	1	2	20						
5	0	1	0	4	20						
12	0	0	1	2							
6	6 0		0	4	24						
4	0	1	1	6							

Table 7.2 Example for Setting PLL Clock Frequencies

NOTE:

1. PLL clock frequency = 16 MHz , 20 MHz or 24 MHz

Figure 7.11 Procedure to Use PLL Clock as CPU Clock Source

7.2 CPU Clock and Peripheral Function Clock

Two type clocks: CPU clock to operate the CPU and peripheral function clocks to operate the peripheral functions.

7.2.1 CPU Clock and BCLK

These are operating clocks for the CPU and watchdog timer.

The clock source for the CPU clock can be chosen to be the main clock, sub clock, on-chip oscillator clock or the PLL clock.

If the main clock or on-chip oscillator clock is selected as the clock source for the CPU clock, the selected clock source can be divided by 1 (undivided), 2, 4, 8 or 16 to produce the CPU clock. Use the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register to select the divide-by-n value.

When the PLL clock is selected as the clock source for the CPU clock, the CM06 bit should be set to "0" and the CM17 to CM16 bits to "00b" (undivided).

After reset, the main clock divided by 8 provides the CPU clock.

Note that when entering stop mode from high- or medium-speed mode, on-chip oscillator mode or on-chip oscillator low power dissipation mode, or when the CM05 bit in the CM0 register is set to "1" (main clock turned off) in low-speed mode, the CM06 bit in the CM0 register is set to "1" (divide-by-8 mode).

7.2.2 Peripheral Function Clock (f1, f2, f8, f32, f1SIO, f2SIO, f8SIO, f32SIO, fAD, fCAN0, fC32)

These are operating clocks for the peripheral functions.

Two of these, fi (i = 1, 2, 8, 32) and fiSIO are derived from the main clock, PLL clock or on-chip oscillator clock by dividing them by i. The clock fi is used for timers A and B, and fiSIO is used for serial I/O. The f8 and f32 clocks can be output from the CLKOUT pin.

The fAD clock is produced from the main clock, PLL clock or on-chip oscillator clock, and is used for the A/D converter.

The fCAN0 clock is derived from the main clock, PLL clock or on-chip oscillator clock by dividing them by 1 (undivided), 2, 4, 8 or 16, and is used for the CAN module.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to "1" (peripheral function clock turned off during wait mode), or when the microcomputer is in low power dissipation mode, the fi, fiSIO, fAD, and fCAN0 clocks are turned off ⁽¹⁾.

The fC32 clock is derived from the sub clock, and is used for timers A and B. This clock can be used when the sub clock is activated.

NOTE

1. fCAN0 clock stops at "H" in CAN0 sleep mode.

7.3 Clock Output Function

The f8, f32 or fC clock can be output from the CLKOUT pin. Use the CM01 to CM00 bits in the CM0 register to select.

7.4 Power Control

Normal operation mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operation mode in this document.

7.4.1 Normal Operation Mode

Normal operation mode is further classified into seven sub modes.

In normal operation mode, because the CPU clock and the peripheral function clocks both are on, the CPU and the peripheral functions are operating. Power control is exercised by controlling the CPU clock frequency. The higher the CPU clock frequency, the greater the processing capability. The lower the CPU clock frequency, the smaller the power consumption in the chip. If the unnecessary oscillator circuits are turned off, the power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source to which switched must be oscillating stably. If the new clock source is the main clock, sub clock or PLL clock, allow a sufficient wait time in a program until it becomes oscillating stably.

Note that operation modes cannot be changed directly from low-speed or low power dissipation mode to on-chip oscillator or on-chip oscillator low power dissipation mode. Nor can operation modes be changed directly from on-chip oscillator or on-chip oscillator low power dissipation mode to low-speed or low power dissipation mode. Where the CPU clock source is changed from the on-chip oscillator to the main clock, change the operation mode to the medium-speed mode (divide-by-8 mode) after the clock was divided by 8 (the CM06 bit in the CM0 register was set to "1") in the on-chip oscillator mode.

7.4.1.1 High-speed Mode

The main clock divided by 1 provides the CPU clock. If the sub clock is activated, fC32 can be used as the count source for timers A and B.

7.4.1.2 PLL Operation Mode

The main clock multiplied by 2, 4 or 6 provides the PLL clock, and this PLL clock serves as the CPU clock. If the sub clock is activated, fC32 can be used as the count source for timers A and B. PLL operation mode can be entered from high speed mode. If PLL operation mode is to be changed to wait or stop mode, first go to high speed mode before changing.

7.4.1.3 Medium-speed Mode

The main clock divided by 2, 4, 8 or 16 provides the CPU clock. If the sub clock is activated, fC32 can be used as the count source for timers A and B.

7.4.1.4 Low-speed Mode

The sub clock provides the CPU clock. The main clock is used as the clock source for the peripheral function clock when the CM21 bit in the CM2 register is set to "0" (on-chip oscillator turned off), and the on-chip oscillator clock is used when the CM21 bit is set to "1" (on-chip oscillator oscillating). The fC32 clock can be used as the count source for timers A and B.

7.4.1.5 Low Power Dissipation Mode

In this mode, the main clock is turned off after being placed in low speed mode. The sub clock provides the CPU clock. The fC32 clock can be used as the count source for timers A and B.

Simultaneously when this mode is selected, the CM06 bit in the CM0 register becomes "1" (divide-by-8 mode). In the low power dissipation mode, do not change the CM06 bit. Consequently, the medium speed (divide-by-8) mode is to be selected when the main clock is operated next.

7.4.1.6 On-chip Oscillator Mode

The on-chip oscillator clock divided by 1 (undivided), 2, 4, 8 or 16 provides the CPU clock. The on-chip oscillator clock is also the clock source for the peripheral function clocks. If the sub clock is activated, fC32 can be used as the count source for timers A and B.

7.4.1.7 On-chip Oscillator Low Power Dissipation Mode

The main clock is turned off after being placed in on-chip oscillator mode. The CPU clock can be selected like in the on-chip oscillator mode. The on-chip oscillator clock is the clock source for the peripheral function clocks. If the sub clock is activated, fC32 can be used as the count source for timers A and B. When the operation mode is returned to the high- and medium-speed modes, set the CM06 bit in the CM0 register to "1" (divide-by-8 mode).

Table 7.3 lists the setting clock related bit and modes.

Modes		CM2 Register	CM1 R	legister		CM0 R	egister	
		CM21	CM11	CM17, CM16	CM07	CM06	CM05	CM04
PLL Oper	ation Mode	0	1	00b	0	0	0	-
High-Spe	eed Mode	0	0	00b	0	0	0	-
Medium-	divided by 2	0	0	01b	0	0	0	-
Speed	divided by 4	0	0	10b	0	0	0	-
Mode	divided by 8	0	0	-	0	1	0	-
	divided by 16	0	0	11b	0	0	0	-
Low-Speed Mode		-	0	-	1	-	0	1
Low Power		0	0	-	1	1 ⁽¹⁾	1 ⁽¹⁾	1
Dissipati	on Mode							
On-chip	divided by 1	1	0	00b	0	0	0	-
Oscillator	divided by 2	1	0	01b	0	0	0	-
Mode	divided by 4	1	0	10b	0	0	0	-
	divided by 8	1	0	-	0	1	0	-
	divided by 16	1	0	11b	0	0	0	-
On-chip Low power Mode	Oscillator Dissipation	1	0	(NOTE 2)	0	(NOTE 2)	1	-

Table 7.3 Setting Clock Related Bit and Mode	7.3 Setting Clock Related Bit and Mo	des
--	--------------------------------------	-----

-: "0" or "1"

NOTES:

1. When the CM05 bit is set to "1" (main clock turned off) in low-speed mode, the mode goes to low power dissipation mode and the CM06 bit is set to "1" (divide-by-8 mode) simultaneously.

2. The divide-by-n value can be selected the same way as in on-chip oscillator mode.

7.4.2 Wait Mode

In wait mode, the CPU clock is turned off, so are the CPU (because operated by the CPU clock) and the watchdog timer. However, if the PM22 bit in the PM2 register is "1" (on-chip oscillator clock for the watchdog timer count source), the watchdog timer remains active. Because the main clock, sub clock and on-chip oscillator clock all are on, the peripheral functions using these clocks keep operating.

7.4.2.1 Peripheral Function Clock Stop Function

If the CM02 bit in the CM0 register is "1" (peripheral function clocks turned off during wait mode), the f1, f2, f8, f32, f1SIO, f8SIO, f32SIO, fAD and fCAN0 clocks are turned off when in wait mode, with the power consumption reduced that much. However, fC32 remains on.

7.4.2.2 Entering Wait Mode

The microcomputer is placed into wait mode by executing the WAIT instruction.

When the CM11 bit = 1 (CPU clock source is the PLL clock), be sure to set the CM11 bit in the CM1 register to "0" (CPU clock source is the main clock) before going to wait mode. The power consumption of the chip can be reduced by setting the PLC07 bit in the PLC0 register to "0" (PLL stops).

7.4.2.3 Pin Status During Wait Mode

Table 7.4 lists the pin status during wait mode.

Table 7.4	Pin Status	During	Wait	Mode
-----------	------------	--------	------	------

	Pin	Single-Chip Mode
I/O Ports		Retains status before wait mode
CLKOUT	When fC selected	Does not stop
	When f8, f32 selected	•CM02 bit = 0: Does not stop
		•CM02 bit = 1: Retains status before wait mode

7.4.2.4 Exiting Wait Mode

The microcomputer is moved out of wait mode by a hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupt.

If the microcomputer is to be moved out of wait mode by a hardware reset or $\overline{\text{NMI}}$ interrupt, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "000b" (interrupt disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. If the CM02 bit is "0" (peripheral function clocks not turned off during wait mode), peripheral function interrupts can be used to exit wait mode. If the CM02 bit is "1" (peripheral function clocks turned off during wait mode), the peripheral functions using the peripheral function clocks stop operating, so that only the peripheral functions clocked by external signals can be used to exit wait mode.

Table 7.5 lists the interrupts to exit wait mode.

Interrupt	CM02 Bit = 0	CM02 Bit = 1
NMI Interrupt	Can be used	Can be used
Serial I/O Interrupt	Can be used when operating with	Can be used when operating with
	internal or external clock	external clock
Key Input Interrupt	Can be used	Can be used
A/D Conversion Interrupt	Can be used in one-shot mode or	- (Do not use)
	single sweep mode	
Timer A Interrupt	Can be used in all modes	Can be used in event counter mode
Timer B interrupt		or when the count source is fc32
INT Interrupt	Can be used	Can be used
CAN0 Wake-up Interrupt	Can be used in CAN sleep mode	Can be used in CAN sleep mode

Table 7.5 Interrupts to Exit Wait Mode

If the microcomputer is to be moved out of wait mode by a peripheral function interrupt, set up the following before executing the WAIT instruction.

(1) Set the ILVL2 to ILVL0 bits in the interrupt control register, for peripheral function interrupts used to exit wait mode.

The ILVL2 to ILVL0 bits in all other interrupt control registers, for peripheral function interrupts not used to exit wait mode, are set to "000b" (interrupt disable).

- (2) Set the I flag to "1".
- (3) Start operating the peripheral functions used to exit wait mode.

When the peripheral function interrupt is used, an interrupt routine is performed as soon as an interrupt request is acknowledged and the CPU clock is supplied again.

When the microcomputer exits wait mode by the peripheral function interrupt, the CPU clock is the same clock as the CPU clock executing the WAIT instruction.

7.4.3 Stop Mode

In stop mode, all oscillator circuits are turned off, so are the CPU clock and the peripheral function clocks. Therefore, the CPU and the peripheral functions clocked by these clocks stop operating. The least amount of power is consumed in this mode. If the voltage applied to VCC is VRAM or more, the internal RAM is retained.

However, the peripheral functions clocked by external signals keep operating. The following interrupts can be used to exit stop mode.

- NMI interrupt
- Key interrupt
- INT interrupt
- Timer A, Timer B interrupt (when counting external pulses in event counter mode)
- Serial I/O interrupt (when external clock is selected)
- CAN0 Wake-up interrupt (when CAN sleep mode is selected)

7.4.3.1 Entering Stop Mode

The microcomputer is placed into stop mode by setting the CM10 bit in the CM1 register to "1" (all clocks turned off). At the same time, the CM06 bit in the CM0 register is set to "1" (divide-by-8 mode) and the CM15 bit in the CM1 register is set to "1" (main clock oscillator circuit drive capability high).

Before entering stop mode, set the CM20 bit in the CM2 register to "0" (oscillation stop, re-oscillation detection function disabled).

Also, if the CM11 bit in the CM1 register is "1" (PLL clock for the CPU clock source), set the CM11 bit to "0" (main clock for the CPU clock source) and the PLC07 bit in the PLC0 register to "0" (PLL turned off) before entering stop mode.

7.4.3.2 Pin Status in Stop Mode

Table 7.6 lists the pin status in stop mode.

Table 7.6 Pin Status in Stop Mode

	Pin	Single-Chip Mode				
I/O Ports		Retains status before stop mode				
CLKOUT	When fC selected	"H"				
	When f8, f32 selected	Retains status before stop mode				

7.4.3.3 Exiting Stop Mode

Stop mode is exited by a hardware reset, MMI interrupt or peripheral function interrupt.

When the hardware reset or $\overline{\text{NMI}}$ interrupt is used to exit wait mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to "000b" (interrupt disabled) before setting the CM10 bit in the CM1 register to "1".

When the peripheral function interrupt is used to exit stop mode, set the CM10 bit to "1" after the following settings are completed.

(1) The ILVL2 to ILVL0 bits in the interrupt control registers, for the peripheral function interrupt used to exit stop mode, must have larger value than that of the RLVL2 to RLVL0 bits.

The ILVL2 to ILVL0 bits in all other interrupt control registers, for the peripheral function interrupts which are not used to exit stop mode, must be set to "000b" (interrupt disabled).

- (2) Set the I flag to "1".
- (3) Start operation of peripheral function being used to exit wait mode.

When exiting stop mode by the peripheral function interrupt, the interrupt routine is performed when an interrupt request is generated and the CPU clock is supplied again.

When stop mode is exited by the peripheral function interrupt or $\overline{\text{NMI}}$ interrupt, the CPU clock source is as follows, in accordance with the CPU clock source setting before the microcomputer had entered stop mode.

- When the sub clock is the CPU clock before entering stop mode:
 Sub clock
- When the main clock is the CPU clock source before entering stop mode: Main clock divided by 8
- When the on-chip oscillator clock is the CPU clock source before entering stop mode:

On-chip oscillator clock divided by 8

Figure 7.12 shows the state transition from normal operation mode to stop mode and wait mode. Figure 7.13 shows the state transition in normal operation mode.

Table 7.7 shows a state transition matrix describing allowed transition and setting. The vertical line shows current state and horizontal line show state after transition.

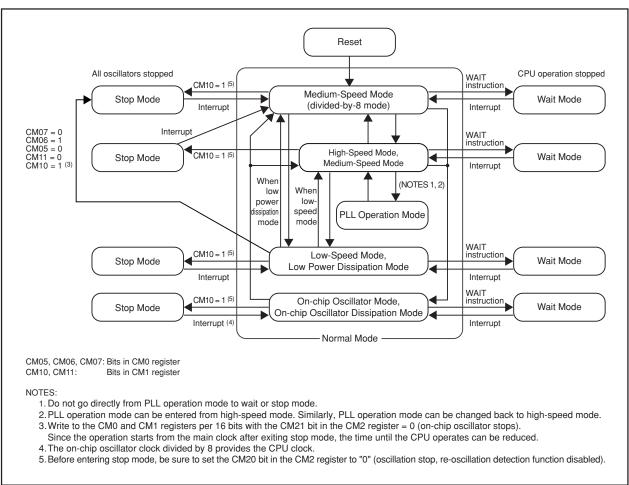


Figure 7.12 State Transition to Stop Mode and Wait Mode

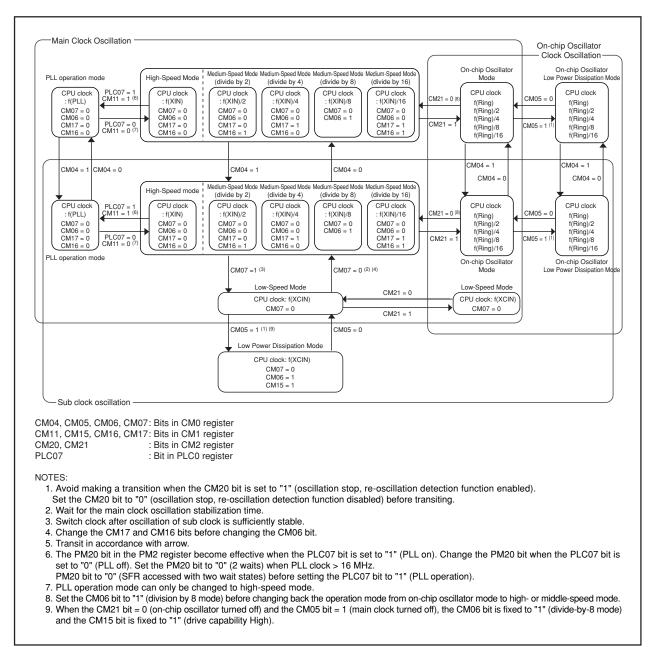


Figure 7.13 State Transition in Normal Operation Mode

Table 7.7 Allowed Transition and Setting

		State after transition							
		High-Speed Mode, Medium-Speed Mode	Low-Speed Mode ⁽²⁾	Low Power Dissipation Mode		On-chip Oscillator Mode	On-chip Oscillator Low Power Dissipation Mode	Stop Mode	Wait Mode
	High-Speed Mode, Medium-Speed Mode	(NOTE 8)	(9) (7)	-	(13) (3)	(15)	-	(16) (1)	(17)
	Low-Speed Mode ⁽²⁾	(8)		(11) (1) (6)	-	-	_	(16) (1)	(17)
	Low Power Dissipation Mode	-	(10)		-	-	-	(16) (1)	(17)
it state	PLL Operation Mode ⁽²⁾	(12) (3)	-	-		_	-	-	-
Current state	On-chip Oscillator Mode	(14) (4)	-	-	-	(NOTE 8)	(11) (1)	(16) (1)	(17)
	On-chip Oscillator Low Power Dissipation Mode	-	-	-	-	(10)	(NOTE 8)	(16) (1)	(17)
	Stop Mode	(18) (5)	(18)	(18)	-	(18) (5)	(18) (5)		-
	Wait Mode	(18)	(18)	(18)	-	(18)	(18)	-	

-: Cannot transit

NOTES:

- 1. Avoid making a transition when the CM20 bit = 1 (oscillation stop, reoscillation detection function enabled). Set the CM20 bit to "0" (oscillation stop, re-oscillation detection function disabled) before transiting.
- 2. On-chip oscillator clock oscillates and stops in low-speed mode. In this mode, the on-chip oscillator can be used as peripheral function clock. Sub clock oscillates and stops in PLL operation mode. In this mode, sub clock can be used as peripheral function clock.
- 3. PLL operation mode can only be entered from and changed to high-speed mode.
- 4. Set the CM06 bit to "1" (division by 8 mode) before transiting from on-chip oscillator mode to high- or medium-speed mode.
- 5. When exiting stop mode, the CM06 bit is set to "1" (division by 8 mode).
- If the CM05 bit is set to "1" (main clock stop), then the CM06 bit is set to "1" (division by 8 mode).
- 7. A transition can be made only when sub clock is oscillating.
- 8. State transitions within the same mode (divide-by-n values changed or sub clock oscillation turned on or off) are shown in the table below.

		Sub Clock Oscillating				Sub Clock Turned Off					
		No Division		Divided by 4	Divided by 8	Divided by 16	No Division		Divided by 4		Divided by 16
ting	No Division	\smallsetminus	(4)	(5)	(7)	(6)	(1)	-	-	-	-
Sub Clock Oscillating	Divided by 2	(3)		(5)	(7)	(6)	-	(1)	-	-	-
) ර ප	Divided by 4	(3)	(4)		(7)	(6)	-	-	(1)	-	-
Clo	Divided by 8	(3)	(4)	(5)	\searrow	(6)	-	-	-	(1)	-
Sub	Divided by 16	(3)	(4)	(5)	(7)	\geq	-	-	-	-	(1)
Off	No Division	(2)	-	-	-	-	\searrow	(4)	(5)	(7)	(6)
Sub Clock Turned	Divided by 2	-	(2)	-	-	-	(3)	\geq	(5)	(7)	(6)
L L	Divided by 4	-	-	(2)	-	-	(3)	(4)		(7)	(6)
Cloc	Divided by 8	-	-	-	(2)	-	(3)	(4)	(5)		(6)
Sub	Divided by 16	-	-	-	-	(2)	(3)	(4)	(5)	(7)	$\overline{}$

9. ():setting method. See right table.

<u> </u>	O atting			
	Setting	Operation		
(1)	CM04=0	Sub clock turned off		
(2)	CM04=1	Sub clock oscillating		
(3)	CM06=0	CPU clock no division		
	CM17=0	mode		
	CM16=0			
(4)	CM06=0	CPU clock division by 2		
	CM17=0	mode		
	CM16=1			
(5)	CM06=0	CPU clock division by 4		
	CM17=1	mode		
	CM16=0			
(6)	CM06=0	CPU clock division by 16		
	CM17=1	mode		
	CM16=1			
(7)	CM06=1	CPU clock division by 8 mode		
(8)	CM07=0	Main clock, PLL clock		
		or on-chip oscillator		
		clock selected		
	CM07=1	Sub clock selected		
	CM05=0	Main clock oscillating		
	CM05=1	Main clock turned off		
(12)	PLC07=0	Main clock selected		
	CM11=0			
(13)	PLC07=1	PLL clock selected		
	CM11=1			
(14)	CM21=0	Main clock or		
		PLL clock selected		
(15)	CM21=1	On-chip oscillator clock		
		selected		
	CM10=1	Transition to stop mode		
(17)	WAIT	Transition to wait mode		
	instruction	E 11 1		
(18)	Hardware	Exit stop mode or wait mode		
	interrupt			
		, CM07: Bits in CM0 register		
		, CM17: Bits in CM1 register		
	20, CM21	: Bits in CM2 register		
PLC	07	: Bit in PLC0 register		

7.5 Oscillation Stop and Re-oscillation Detection Function

The oscillation stop and re-oscillation detection function is such that main clock oscillation circuit stop and re-oscillation are detected. At oscillation stop, re-oscillation detection, reset or oscillation stop, re-oscillation detection interrupt request are generated. Which one is to be generated can be selected using the CM27 bit in the CM2 register.

The oscillation stop and re-oscillation detection function can be enabled or disabled using the CM20 bit in the CM2 register.

Table 7.8 lists a specification overview of the oscillation stop and re-oscillation detection function.

Table 7.8 Specification Overview of Oscillation Stop and Re-oscillation Detection Function

Item	Specification	
Oscillation Stop Detectable Clock and	$f(XIN) \ge 2 MHz$	
Frequency Bandwidth		
Enabling Condition for Oscillation Stop	Set CM20 bit to "1" (enable)	
and Re-oscillation Detection Function		
Operation at Oscillation Stop,	•Reset occurs (when CM27 bit = 0)	
Re-oscillation Detection	•Oscillation stop, re-oscillation detection interrupt occurs (when the CM27 bit =1)	

7.5.1 Operation When CM27 Bit = 0 (Oscillation Stop Detection Reset)

Where main clock stop is detected when the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the microcomputer is initialized, coming to a halt (oscillation stop reset; refer to **4. SFR**, **5. Reset**).

This status is reset with hardware reset. Also, even when re-oscillation is detected, the microcomputer can be initialized and stopped; it is, however, necessary to avoid such usage (During main clock stop, do not set the CM20 bit to "1" and the CM27 bit to "0").

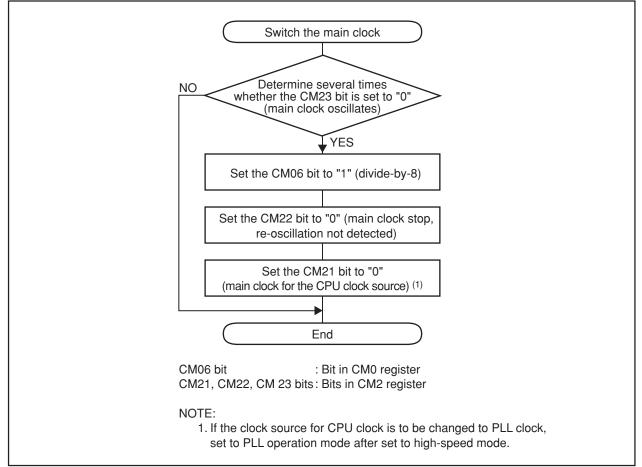
7.5.2 Operation When CM27 Bit = 1 (Oscillation Stop, Re-oscillation Detection Interrupt)

Where the main clock corresponds to the CPU clock source and the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the system is placed in the following state if the main clock comes to a halt:

Oscillation stop, re-oscillation detection interrupt request is generated.

- The on-chip oscillator starts oscillation, and the on-chip oscillator clock becomes the clock source for CPU clock and peripheral functions in place of the main clock.
- CM21 bit = 1 (on-chip oscillator clock is the clock source for CPU clock)
- CM22 bit = 1 (main clock stop detected)
- CM23 bit = 1 (main clock stopped)

Where the PLL clock corresponds to the CPU clock source and the CM20 bit is "1", the system is placed in the following state if the main clock comes to a halt: Since the CM21 bit remains unchanged, set it to "1" (on-chip oscillator clock) inside the interrupt routine.


- Oscillation stop, re-oscillation detection interrupt request is generated.
- CM22 bit = 1 (main clock stop detected)
- CM23 bit = 1 (main clock stopped)
- CM21 bit remains unchanged

Where the CM20 bit is "1", the system is placed in the following state if the main clock re-oscillates from the stop condition:

- Oscillation stop, re-oscillation detection interrupt request is generated.
- CM22 bit = 1 (main clock re-oscillation detected)
- CM23 bit = 0 (main clock oscillation)
- CM21 bit remains unchanged

7.5.3 How to Use Oscillation Stop and Re-oscillation Detection Function

- The oscillation stop, re-oscillation detection interrupt shares the vector with the watchdog timer interrupt. If the oscillation stop, re-oscillation detection and watchdog timer interrupts both are used, read the CM22 bit in an interrupt routine to determine which interrupt source is requesting the interrupt.
- Where the main clock re-oscillated after oscillation stop, the clock source for CPU clock and peripheral function must be switched to the main clock in the program. Figure 7.14 shows the procedure to switch the clock source from the on-chip oscillator to the main clock.
- Simultaneously with oscillation stop, re-oscillation detection interrupt request occurrence, the CM22 bit becomes "1". When the CM22 bit is set at "1", oscillation stop, re-oscillation detection interrupt are disabled. By setting the CM22 bit to "0" in the program, oscillation stop, re-oscillation detection interrupt are enabled.
- If the main clock stops during low speed mode where the CM20 bit is "1", an oscillation stop, re-oscillation
 detection interrupt request is generated. At the same time, the on-chip oscillator starts oscillating. In this
 case, although the CPU clock is derived from the sub clock as it was before the interrupt occurred, the
 peripheral function clocks now are derived from the on-chip oscillator clock.
- To enter wait mode while using the oscillation stop and re-oscillation detection function, set the CM02 bit to "0" (peripheral function clocks not turned off during wait mode).
- Since the oscillation stop and re-oscillation detection function is provided in preparation for main clock stop due to external factors, set the CM20 bit to "0" (oscillation stop, re-oscillation detection function disabled) where the main clock is stopped or oscillated in the program, that is where the stop mode is selected or the CM05 bit is altered.

• This function cannot be used if the main clock frequency is 2 MHz or less. In that case, set the CM20 bit to "0".

Figure 7.14 Procedure to Switch Clock Source from On-chip Oscillator to Main Clock

RENESAS

8. Protection

In the event that a program runs out of control, this function protects the important registers so that they will not be rewritten easily. Figure 8.1 shows the PRCR register. The following lists the registers protected by the PRCR register.

- The PRC0 bit protects the CM0, CM1, CM2, PLC0, PCLKR and CCLKR registers;
- The PRC1 bit protects the PM0, PM1, PM2, TB2SC, INVC0 and INVC1 registers;
- The PRC2 bit protects the PD7, PD9, S3C, S4C, S5C and S6C registers ⁽¹⁾.

NOTE:

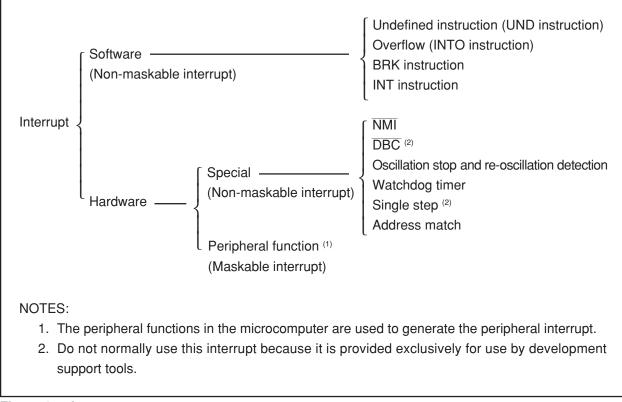
1. The S5C and S6C registers are only in the 128-pin version.

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be set to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction. The PRC0 and PRC1 bits are not automatically set to "0" by writing to any address. They can only be set to "0" in a program.

b7 b6 b5 b4 b3 b2 b1 b0	Symbol PRCR	Address 000Ah	After Reset XX000000b	
	Bit Symbol	Bit Name	Function	RW
	PRC0	Protect Bit 0	Enable write to CM0, CM1, CM2, PLC0, PCLKR, CCLKR registers 0 : Write protected 1 : Write enabled	RW
	PRC1	Protect Bit 1	Enable write to PM0, PM1, PM2, TB2SC, INVC0, INVC1 registers 0 : Write protected 1 : Write enabled	RW
	PRC2	Protect Bit 2	Enable write to PD7, PD9, S3C, S4C, S5C, S6C registers ⁽²⁾ 0 : Write protected 1 : Write enabled ⁽¹⁾	RW
	_ (b5-b3)	Reserved Bit	Set to "0"	RW
		Nothing is assigned. When write, set to "0". When read, their contents are indeterminate.		-

to any address, and must therefore be set in a program.

2. The S5C and S6C registers are only in the 128-pin version.


Figure 8.1 PRCR Register

9. Interrupt

9.1 Type of Interrupts

Figure 9.1 shows the types of interrupts.

Figure 9.1 Interrupts

- Maskable Interrupt: An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority **can be changed** by priority level.
- Non-Maskable Interrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority **cannot be changed** by priority level.

9.2 Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

9.2.1 Undefined Instruction Interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

9.2.2 Overflow Interrupt

An overflow interrupt occurs when executing the INTO instruction with the O flag set to "1" (the operation resulted in an overflow). The following are instructions whose O flag changes by arithmetic: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

9.2.3 BRK Interrupt

A BRK interrupt occurs when executing the BRK instruction.

9.2.4 INT Instruction Interrupt

An INT instruction interrupt occurs when executing the INT instruction. Software interrupt Nos. 0 to 63 can be specified for the INT instruction. Because software interrupt Nos. 1 to 31 are assigned to peripheral function interrupts, the same interrupt routine as for peripheral function interrupts can be executed by executing the INT instruction.

In software interrupt Nos. 0 to 31, the U flag is saved to the stack during instruction execution and is set to "0" (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. In software interrupt Nos. 32 to 63, the U flag does not change state during instruction execution, and the SP then selected is used.

9.3 Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral function interrupts.

9.3.1 Special Interrupts

Special interrupts are non-maskable interrupts.

9.3.1.1 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. For details, refer to **9.7** $\overline{\text{NMI}}$ Interrupt.

9.3.1.2 DBC Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development support tools.

9.3.1.3 Watchdog Timer Interrupt

Generated by the watchdog timer. Once a watchdog timer interrupt is generated, be sure to initialize the watchdog timer. For details about the watchdog timer, refer to **10. Watchdog Timer**.

9.3.1.4 Oscillation Stop and Re-oscillation Detection Interrupt

Generated by the oscillation stop and re-oscillation detection function. For details about the oscillation stop and re-oscillation detection function, refer to **7. Clock Generating Circuit**.

9.3.1.5 Single-Step Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development support tools.

9.3.1.6 Address Match Interrupt

An address match interrupt is generated immediately before executing the instruction at the address indicated by the RMAD0 to RMAD3 registers that corresponds to one of the AIER0 or AIER1 bit in the AIER register or the AIER20 or AIER21 bit in the AIER2 register which is "1" (address match interrupt enabled). For details, refer to **9.10 Address Match Interrupt**.

9.3.2 Peripheral Function Interrupts

The peripheral function interrupt occurs when a request from the peripheral functions in the microcomputer is acknowledged. The peripheral function interrupt is a maskable interrupt. See **Table 9.2 Relocatable Vector Tables** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

9.4 Interrupts and Interrupt Vector

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 9.2 shows the interrupt vector.

	MSB	LSB
Vector address (L)	Low-orde	er address
	Middle-orc	ler address
	0000	High-order address
Vector address (H)	0000	0000

Figure 9.2 Interrupt Vector

9.4.1 Fixed Vector Tables

The fixed vector tables are allocated to the addresses from FFFDCh to FFFFFh. Table 9.1 lists the fixed vector tables. In the flash memory version of microcomputer, the vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to 20.2 Functions to Prevent Flash Memory from Rewriting.

7. Clock Generating Circuit

10. Watchdog Timer

9.7 NMI Interrupt

5. Reset

Table 9.1 Fixed Vector Tables		
Interrupt Source	Vector table Addresses Address (L) to Address (H)	
Undefined Instruction (UND instruction)	FFFDChto FFFDFh	M16C/60, M16C/20 Series Software
Overflow (INTO instruction)	FFFE0h to FFFE3h	Manual
BRK Instruction (2)	FFFE4h to FFFE7h	
Address Match	FFFE8h to FFFEBh	9.10 Address Match Interrupt
Single Step (1)	FFFECh to FFFEFh	

Reset NOTES:

DBC⁽¹⁾

NMI

Watchdog Timer

1. Do not normally use this interrupt because it is provided exclusively for use by development support tools.

FFFF0h to FFFF3h

FFFF4h to FFFF7h

FFFF8h to FFFFBh

FFFFCh to FFFFFh

2. If the contents of address FFFE7h is FFh, program execution starts from the address shown by the vector in the relocatable vector table.

9.4.2 Relocatable Vector Tables

Oscillation Stop and Re-oscillation Detection,

The 256 bytes beginning with the start address set in the INTB register comprise a relocatable vector table area. Table 9.2 lists the relocatable vector tables. Setting an even address in the INTB register results in the interrupt sequence being executed faster than in the case of odd addresses.

Table 9.2 Relocatable Vector Tables

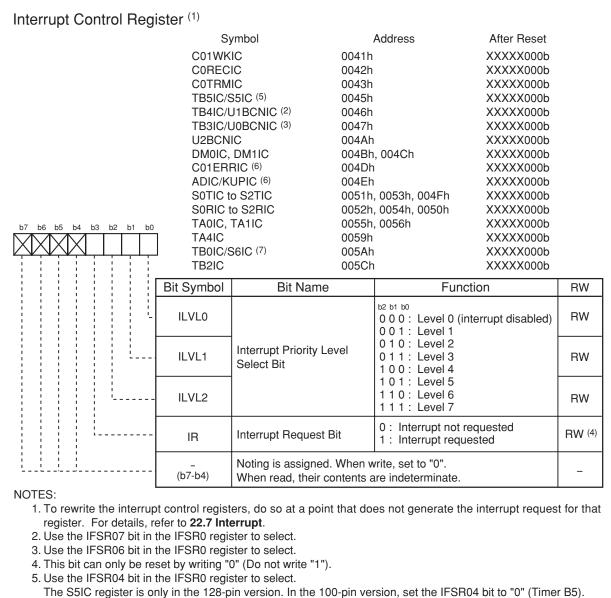
Interrupt Source	Vector Address (1)	Software	Reference
	Address (L) to Address (H)	Interrupt Number	
BRK Instruction (2)	+0 to +3 (0000h to 0003h)	0	M16C/60, M16C/20 Series
			Software Manual
CAN0 Wake-up (10)	+4 to +7 (0004h to 0007h)	1	18. CAN Module
CAN0 Successful Reception	+8 to +11 (0008h to 000Bh)	2	
CAN0 Successful Transmission	+12 to +15 (000Ch to 000Fh)	3	
INT3	+16 to +19 (0010h to 0013h)	4	9.6 INT Interrupt
Timer B5, SI/O5 ⁽¹¹⁾	+20 to +23 (0014h to 0017h)	5	12. Timers
Timer B4, UART1 Bus Collision Detection ^{(3) (9)}	+24 to +27 (0018h to 001Bh)	6	14. Serial I/O
Timer B3, UART0 Bus Collision Detection (4) (9)	+28 to +31 (001Ch to 001Fh)	7	
SIO4, INT5 (5)	+32 to +35 (0020h to 0023h)	8	14. Serial I/O
SIO3, INT4 ⁽⁶⁾	+36 to +39 (0024h to 0027h)	9	9.6 INT Interrupt
UART2 Bus Collision Detection (9)	+40 to +43 (0028h to 002Bh)	10	14. Serial I/O
DMA0	+44 to +47 (002Ch to 002Fh)	11	11. DMAC
DMA1	+48 to +51 (0030h to 0033h)	12	
CAN0 Error (10) (16)	+52 to +55 (0034h to 0037h)	13	18. CAN Module
A/D, Key Input ^{(7) (16)}	+56 to +59 (0038h to 003Bh)	14	15. A/D Convertor, 9.8 Key Input Interrupt
UART2 Transmission, NACK2 (8)	+60 to +63 (003Ch to 003Fh)	15	14. Serial I/O
UART2 Reception, ACK2 ⁽⁸⁾	+64 to +67 (0040h to 0043h)	16	
UART0 Transmission, NACK0 ⁽⁸⁾	+68 to +71 (0044h to 0047h)	17	-
UART0 Reception, ACK0 ⁽⁸⁾	+72 to +75 (0048h to 004Bh)	18	
UART1 Transmission, NACK1 ⁽⁸⁾	+76 to +79 (004Ch to 004Fh)	19	-
UART1 Reception, ACK1 ⁽⁸⁾	+80 to +83 (0050h to 0053h)	20	
Timer A0	+84 to +87 (0054h to 0057h)	21	12. Timers
Timer A1	+88 to +91 (0058h to 005Bh)	22	
Timer A2, INT7 (12)	+92 to +95 (005Ch to 005Fh)	23	12. Timers
Timer A3, INT6 ⁽¹³⁾	+96 to +99 (0060h to 0063h)	24	9.6 INT Interrupt
Timer A4	+100 to +103 (0064h to 0067h)	25	12. Timers
Timer B0, SI/O6 (14)	+104 to +107 (0068h to 006Bh)	26	12. Timers, 14. Serial I/O
Timer B1, INT8 (15)	+108 to +111 (006Ch to 006Fh)	27	12. Timers, 9.6 INT Interrupt
Timer B2	+112 to +115 (0070h to 0073h)	28	12. Timers
INTO	+116 to +119 (0074h to 0077h)	29	9.6 INT Interrupt
INT1	+120 to +123 (0078h to 007Bh)	30	'
INT2	+124 to +127 (007Ch to 007Fh)	31	1
INT Instruction Interrupt (2)	+128 to +131 (0080h to 0083h)	32	M16C/60, M16C/20 Series
	to	to	Software Manual
	+252 to + 255 (00FCh to 00FFh)	63	

NOTES:

1. Address relative to address in INTB.

2. These interrupts cannot be disabled using the I flag.

- 3. Use the IFSR07 bit in the IFSR0 register to select.
- 4. Use the IFSR06 bit in the IFSR0 register to select.
- 5. Use the IFSR17 bit in the IFSR1 register to select. When using SI/O4, set the IFSR03 bit in the IFSR0 register to "1" (SI/O4) simultaneously.
- 6. Use the IFSR16 bit in the IFSR1 register to select. When using SI/O3, set the IFSR00 bit in the IFSR0 register to "1" (SI/O3) simultaneously.
- 7. Use the IFSR01 bit in the IFSR0 register to select.
- 8. During I²C mode, NACK and ACK interrupts comprise the interrupt source.
- 9. Bus collision detection: During IE mode, this bus collision detection constitutes the cause of an interrupt.
- During I²C mode, a start condition or a stop condition detection constitutes the cause of an interrupt. 10. Set the IFSR02 bit in the IFSR0 register to "0".
- 11. Use the IFSR04 bit in the IFSR0 register to select.
- SI/O5 is only in the 128-pin version. In the 100-pin version, set the IFSR04 bit to "0" (Timer B5). 12. Use the IFSR20 bit in the IFSR2 register to select.
- INT7 is only in the 128-pin version. In the 100-pin version, set the IFSR20 bit to "0" (Timer A2). 13. Use the IFSR21 bit in the IFSR2 register to select.
- INT6 is only in the 128-pin version. In the 100-pin version, set the IFSR21 bit to "0" (Timer A3). 14. Use the IFSR05 bit in the IFSR0 register to select.
- SI/O6 is only in the 128-pin version. In the 100-pin version, set the IFSR05 bit to "0" (Timer B0). 15. Use the IFSR22 bit in the IFSR2 register to select.
 - INT8 is only in the 128-pin version. In the 100-pin version, set the IFSR22 bit to "0" (Timer B1).
- 16. If the PCLK6 bit in the PCLKR register is set to "1", software interrupt number 13 can be changed to CAN0 error or key input interrupt, and software interrupt number 14 can be changed to A/D interrupt. (The software interrupt number of key input is changed from 14 to 13.) Use the IFSR26 bit in the IFSR2 register to select when selecting CAN0 error or key input.



9.5 Interrupt Control

The following describes how to enable/disable the maskable interrupts, and how to set the priority in which order they are accepted. What is explained here does not apply to non-maskable interrupts.

Use the I flag in the FLG register, IPL, and the ILVL2 to ILVL0 bits in the each interrupt control register to enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in the each interrupt control register.

Figures 9.3 and 9.4 show the interrupt control registers.

The S5IC register is only in the 128-pin version. In the 100-pin version, set the IFSR04 bit to "0" (Timer B5). 6. If the PCLK6 bit in the PCLKR register is set to "1", C01ERRIC/KUPIC register can be assigned in an address 004Dh, and the ADIC register can be assigned in an address 004Eh. (SFR location of the KUPIC register is changed from address 004Eh to address 004Dh.)

7. Use the IFSR05 bit in the IFSR0 register to select.

The S6IC register is only in the 128-pin version. In the 100-pin version, set the IFSR05 bit to "0" (Timer B0).

Figure 9.3 Interrupt Control Registers (1)

Interrupt Control Reg	ister (1)					
		Symbol		Address	After Reset	
b7 b6 b5 b4 b3 b2 b1 b0	S3I INT	3IC C/INT5IC ⁽⁶⁾ C/INT4IC ⁽⁷⁾ 0IC to INT2IC 2IC/INT7IC ⁽⁸⁾	004	44h 48h 49h 5Dh to 005Fh 57h	XX00X000b XX00X000b XX00X000b XX00X000b XX00X000b	
	J TA3	BIC/INT6IC ⁽⁹⁾ IIC/INT8IC ⁽¹⁰⁾		58h 5Bh	XX00X000b XX00X000b	
	Bit Symbol	Bit Name		Fur	nction	RW
	ILVL0			001: Level 1	(interrupt disabled)	RW
	ILVL1	Interrupt Priority Level Select Bit		0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4		RW
	ILVL2			1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7		RW
	IR	Interrupt Request Bit		0 : Interrupt not 1 : Interrupt req		RW (2)
	POL	Polarity Select Bit		0 : Selects fallin 1 : Selects rising		RW
	_ (b5)	Reserved Bit		Set to "0"		RW
	_ (b7-b6)	Nothing is assigned. W When read, their conter				-
NOTES:	nt control rogio	ters do so at a point tha	t do	on not gonorate i		t for that

1. To rewrite the interrupt control registers, do so at a point that does not generate the interrupt request for that register. For details, refer to **22.7 Interrupt**.

- 2. This bit can only be reset by writing "0" (Do not write "1").
- If the IFSR10 to IFSR15 bits in the IFSR1 register and the IFSR23 to IFSR25 bits in the IFSR2 register are "1" (both edges), set the POL bit in the INT0IC to INT8IC register to "0" (falling edge). INT6IC to INT8IC registers are in the 128-pin version.
- 4. Set the POL bit in the S3IC register to "0" (falling edge) when the IFSR00 bit in the IFSR0 register = 1 and the IFSR16 bit in the IFSR1 register = 0 (SI/O3 selected).
- 5. Set the POL bit in the S4IC register to "0" (falling edge) when the IFSR03 bit in the IFSR0 register = 1 and the IFSR17 bit in the IFSR1 register = 0 (SI/O4 selected).
- 6. Use the IFSR17 bit in the IFSR1 register to select.
- 7. Use the IFSR16 bit in the IFSR1 register to select.
- 8. Use the IFSR20 bit in the IFSR2 register to select.
- The INT7IC register is only in the 128-pin version. In the 100-pin version, set the IFSR20 bit to "0" (Timer A2). 9. Use the IFSR21 bit in the IFSR2 register to select.
- The INT6IC register is only in the 128-pin version. In the 100-pin version, set the IFSR21 bit to "0" (Timer A3). 10. Use the IFSR22 bit in the IFSR2 register to select.
- The INT8IC register is only in the 128-pin version. In the 100-pin version, set the IFSR22 bit to "0" (Timer B1).

Figure 9.4 Interrupt Control Registers (2)

9.5.1 I Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to "1" (enabled) enables the maskable interrupt. Setting the I flag to "0" (disabled) disables all maskable interrupts.

9.5.2 IR Bit

The IR bit is set to "1" (interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is set to "0" (interrupt not requested).

The IR bit can be set to "0" in a program. Note that do not write "1" to this bit.

9.5.3 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using the ILVL2 to ILVL0 bits.

Table 9.3 shows the settings of interrupt priority levels and Table 9.4 shows the interrupt priority levels enabled by the IPL.

The following are conditions under which an interrupt is accepted:

- \cdot I flag = 1
- \cdot IR bit = 1
- · interrupt priority level > IPL

The I flag, IR bit, ILVL2 to ILVL0 bits and IPL are independent of each other. In no case do they affect one another.

Table 9.3 Settings of Interrupt Priority Levels

ILVL2 to ILVL0 Bits	Interrupt Priority Level	Priority Order
000b	Level 0 (Interrupt disabled)	-
001b	Level 1	Low
010b	Level 2	
011b	Level 3	
100b	Level 4	
101b	Level 5	
110b	Level 6	🖌
111b	Level 7	High

Table 9.4 Interrupt Priority Levels Enabled by IPL

	. , , ,
IPL	Enabled Interrupt Priority Levels
000b	Interrupt levels 1 and above are enabled
001b	Interrupt levels 2 and above are enabled
010b	Interrupt levels 3 and above are enabled
011b	Interrupt levels 5 and above are enabled
100b	Interrupt levels 5 and above are enabled
101b	Interrupt levels 6 and above are enabled
110b	Interrupt levels 7 and above are enabled
111b	All maskable interrupts are disabled

9.5.4 Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt request is generated during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt request is generated during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

The CPU behavior during the interrupt sequence is described below. Figure 9.5 shows time required for executing the interrupt sequence.

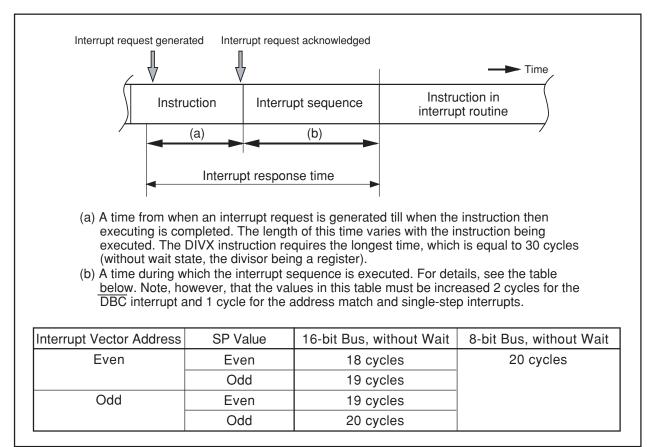
- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 000000h. Then, the IR bit applicable to the interrupt information is set to "0" (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register ⁽¹⁾ within the CPU.
- (3) The I, D and U flags in the FLG register become as follows:
 - The I flag is set to "0" (interrupt disabled)
 - The D flag is set to "0" (single-step interrupt disabled)
 - The U flag is set to "0" (ISP selected)

However, the U flag does not change state if an INT instruction for software interrupt Nos. 32 to 63 is executed.

- (4) The temporary register within the CPU is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the acknowledged interrupt in IPL is set.
- (7) The start address of the relevant interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt routine.

NOTE:


1. Temporary register cannot be modified by users.

CPU clock	
Address bus	Address Indeterminate (1) SP-2 SP-4 vec vec+2 PC
Data bus	Interrupt Indeterminate (1) SP-2 SP-4 vec vec+2 contents
RD	Indeterminate (1)
WR (2)	
A read cy	erminate state depends on the instruction queue buffer. cle occurs when the instruction queue buffer is ready to accept instructions. signal timing shown here is for the case where the stack is located in the internal RAM.

Figure 9.5 Time Required for Executing Interrupt Sequence

9.5.5 Interrupt Response Time

Figure 9.6 shows the interrupt response time. The interrupt response or interrupt acknowledge time denotes a time from when an interrupt request is generated till when the first instruction in the interrupt routine is executed. Specifically, it consists of a time from when an interrupt request is generated till when the instruction then executing is completed ((a) on Figure 9.6) and a time during which the interrupt sequence is executed ((b) on Figure 9.6).

Figure 9.6 Interrupt response time

9.5.6 Variation of IPL when Interrupt Request is Accepted

When a maskable interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.

When a software interrupt or special interrupt request is accepted, one of the interrupt priority levels listed in Table 9.5 is set in the IPL. Table 9.5 shows the IPL values of software and special interrupts when they are accepted.

Table 9.5 IPL Level that is Set to IPL When A Software or Special Interrupt is Accepted

Interrupt Sources	Value that is Set to IPL
Oscillation Stop and Re-oscillation Detection, Watchdog Timer, NMI	7
Software, Address Match, DBC, Single-Step	Not changed

9.5.7 Saving Registers

In the interrupt sequence, the FLG register and PC are saved to the stack.

At this time, the 4 high-order bits of the PC and the 4 high-order (IPL) and 8 low-order bits in the FLG register, 16 bits in total, are saved to the stack first. Next, the 16 low-order bits of the PC are saved. Figure 9.7 shows the stack status before and after an interrupt request is accepted.

The other necessary registers must be saved in a program at the beginning of the interrupt routine. Use the PUSHM instruction, and all registers except SP can be saved with a single instruction.



Figure 9.7 Stack Status Before and After Acceptance of Interrupt Request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the SP⁽¹⁾, at the time of acceptance of an interrupt request, is even or odd. If the SP (Note) is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. Figure 9.8 shows the operation of the saving registers.

NOTE:

1. When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

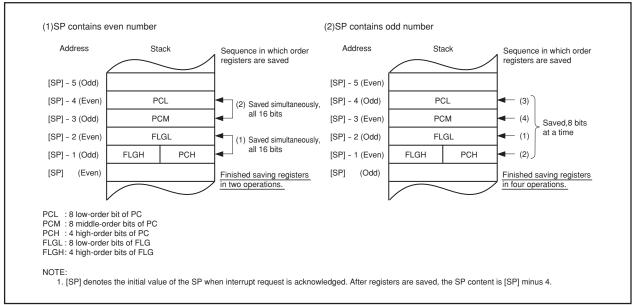


Figure 9.8 Operation of Saving Registers

9.5.8 Returning from an Interrupt Routine

The FLG register and PC in the state in which they were immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine. Thereafter the CPU returns to the program which was being executed before accepting the interrupt request.

Return the other registers saved by a program within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

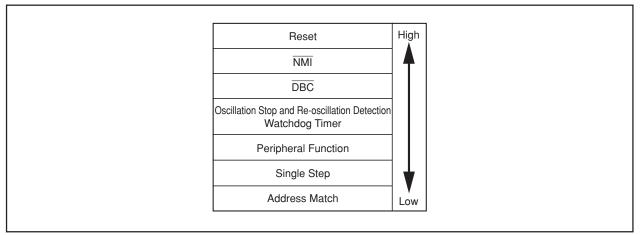
9.5.9 Interrupt Priority

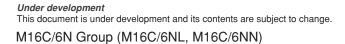
If two or more interrupt requests are generated while executing one instruction, the interrupt request that has the highest priority is accepted.

For maskable interrupts (peripheral functions), any desired priority level can be selected using the ILVL2 to ILVL0 bits. However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the highest priority interrupt accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware. Figure 9.9 shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.




Figure 9.9 Hardware Interrupt Priority

9.5.10 Interrupt Priority Resolution Circuit

The interrupt priority resolution circuit is used to select the interrupt with the highest priority among those requested.

Figure 9.10 shows the circuit that judges the interrupt priority level.

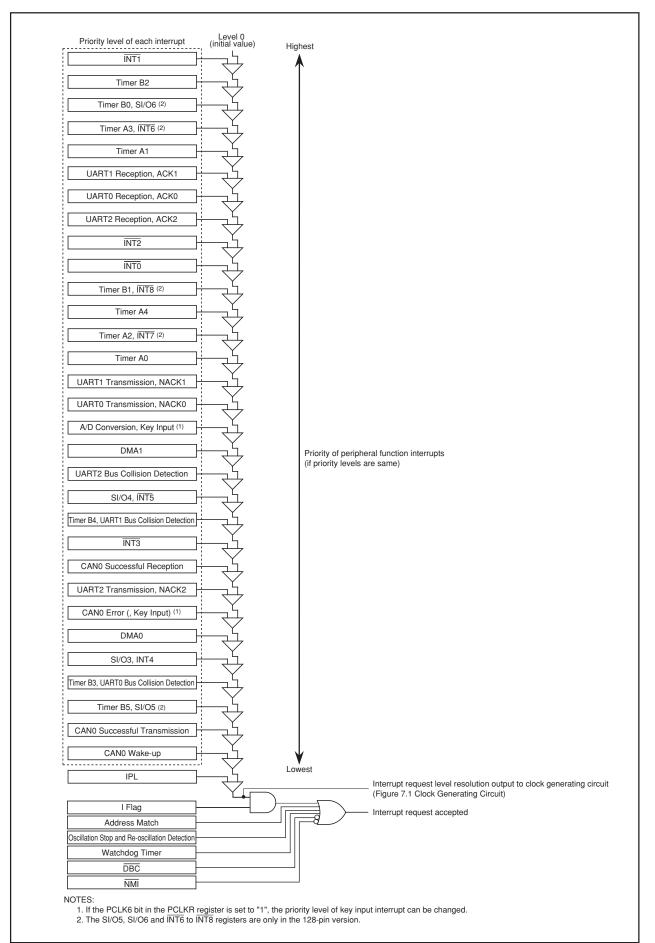


Figure 9.10 Interrupts Priority Select Circuit

9.6 INT Interrupt

INTi interrupt (i = 0 to 8) ⁽¹⁾ is triggered by the edges of external inputs. The edge polarity is selected using the IFSR10 to IFSR15 bits in the IFSR1 register and the IFSR23 to IFSR25 bits in the IFSR2 register. INT4 share the interrupt vector and interrupt control register with SI/O3, INT5 share with SI/O4, INT6 share with Timer A3, INT7 share with Timer A2, INT8 share with Timer B1. To use the INT4 to INT8 interrupts ⁽¹⁾, set the each bits as follows.

- To use the INT4 interrupt: Set the IFSR16 bit in the IFSR1 register to "1" (INT4).
- To use the INT5 interrupt: Set the IFSR17 bit in the IFSR1 register to "1" (INT5).
- To use the INT6 interrupt: Set the IFSR21 bit in the IFSR2 register to "1" (INT6). (1)
- To use the INT7 interrupt: Set the IFSR20 bit in the IFSR2 register to "1" (INT7). (1)
- To use the INT8 interrupt: Set the IFSR22 bit in the IFSR2 register to "1" (INT8). (1)

After modifying the IFSR16, IFSR17, IFSR20, IFSR21 and IFSR22 bits, set the corresponding IR bit to "0" (interrupt not requested) before enabling the interrupt.

NOTE:

1. INT6 to INT8 interrupts are only in the 128-pin version.

Figures 9.11 to 9.13 show the IFSR0, IFSR1 and IFSR2 registers.

Interrupt Request Cause Select Register 0

b7 b6	b5 b4	T	<u> </u>	^{b2}	b1	ьо 1	Symb IFSR		After Reset 00h	
				ł			Bit Symbol	Bit Name	Function	RW
							IFSR00	Interrupt Request Cause Select Bit	0 : Do not set a value 1 : SI/O3	RW
					ĺ.		IFSR01	Interrupt Request Cause Select Bit ⁽¹⁾	0 : A/D conversion 1 : Key input	RW
							IFSR02	Interrupt Request Cause Select Bit	0 : CAN0 wake-up or error 1 : Do not set a value	RW
							IFSR03	Interrupt Request Cause Select Bit	0 : Do not set a value 1 : SI/O4	RW
							IFSR04	Interrupt Request Cause Select Bit ⁽²⁾	0 : Timer B5 1 : SI/O5	RW
							IFSR05	Interrupt Request Cause Select Bit ⁽³⁾	0 : Timer B0 1 : SI/O6	RW
							IFSR06	Interrupt Request Cause Select Bit ⁽⁴⁾	0 : Timer B3 1 : UART0 bus collision detection	RW
							IFSR07	Interrupt Request Cause Select Bit ⁽⁵⁾	0 : Timer B4 1 : UART1 bus collision detection	RW

NOTES:

1. When the PCLK6 bit in the PCLKR register = 0, A/D conversion and key input share the vector and interrupt control register. When using the A/D conversion interrupt, set the IFSR01 bit to "0" (A/D conversion). When using the key input interrupt, set the IFSR01 bit to "1" (key input).

2. Timer B5 and SI/O5 share the vector and interrupt control register. When using the timer B5 interrupt, set the IFSR04 bit to "0" (Timer B5). When using SI/O5 interrupt, set the IFSR04 bit to "1" (SI/O5). The SI/O5 interrupt is only in the 128-pin version. In the 100-pin version, set the IFSR04 bit to "0" (Timer B5).

3. Timer B0 and SI/O6 share the vector and interrupt control register. When using the timer B0 interrupt, set the IFSR05 bit to "0" (Timer B0). When using SI/O6 interrupt, set the IFSR05 bit to "1" (SI/O6). The SI/O6 interrupt is only in the 128-pin version. In the 100-pin version, set the IFSR05 bit to "0" (Timer B0).

4. Timer B3 and UART0 bus collision detection share the vector and interrupt control register. When using the timer B3 interrupt, set the IFSR06 bit to "0" (Tmer B3). When using UART0 bus collision detection, set the IFSR06 bit to "1" (UART0 bus collision detection).

5. Timer B4 and UART1 bus collision detection share the vector and interrupt control register. When using the timer B4 interrupt, set the IFSR07 bit to "0" (Timer B4). When using UART1 bus collision detection, set the IFSR07 bit to "1" (UART1 bus collision detection).

Figure 9.11 IFSR0 Register

b6 b5	b4 b3	b2	b1	b0	Symb IFSR		After Reset 00h	
				[Bit Symbol	Bit Name	Function	RW
					IFSR10	INT0 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
					IFSR11	INT1 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
					IFSR12	INT2 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
					IFSR13	INT3 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
					IFSR14	INT4 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
					IFSR15	INT5 Interrupt Polarity Switching Bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
					IFSR16	Interrupt Request Cause Select Bit ⁽²⁾	0 : SI/O3 ⁽³⁾ 1 : INT4	RW
					IFSR17	Interrupt Request Cause Select Bit ⁽⁴⁾	0 : SI/O4 ⁽⁵⁾ 1 : INT5	RW

1. When setting this bit to "1" (both edges), make sure the POL bit in the INTOIC to INT5IC register is set to "0" (falling edge).

2.SI/O3 and INT4 share the vector and interrupt control register. When using SI/O3 interrupt, set the IFSR16 bit to "0" (SI/O3). When using INT4 interrupt, set the IFSR16 bit to "1" (INT4).

3. When setting this bit to "0" (SI/O3), make sure the IFSR00 bit in the IFSR0 register is set to "1" (SI/O3) simultaneously. And, make sure the POL bit in the S3IC register is set to "0" (falling edge).

4.SI/O4 and INT5 share the vector and interrupt control register. When using SI/O4 interrupt, set the IFSR17 bit to "0" (SI/O4). When using INT5 interrupt, set the IFSR17 bit to "1" (INT5).

5. When setting this bit to "0" (SI/O4), make sure the IFSR03 bit in the IFSR0 register is set to "1" (SI/O4) simultaneously. And, make sure the POL bit in the S4IC register is set to "0" (falling edge).

Figure 9.12 IFSR1 Register

Interrupt Request Cause Select Register 2

b7 b6 b5 b4 b3 b2 b1 b0] Symb IFSR		After Reset X0000000b	
	Bit Symbol	Bit Name	Function	RW
	IFSR20	Interrupt Request Cause Select Bit ^{(2) (6)}	0 : Timer A2 1 : INT7	RW
	IFSR21	Interrupt Request Cause Select Bit ^{(3) (6)}	0 : Timer A3 1 : INT6	RW
	IFSR22	Interrupt Request Cause Select Bit ^{(4) (6)}	0 : Timer B1 1 : INT8	RW
	IFSR23	INT6 Interrupt Polarity Switching Bit ⁽¹⁾ ⁽⁶⁾	0 : One edge 1 : Both edges	RW
	IFSR24	INT7 Interrupt Polarity Switching Bit ^{(1) (6)}	0 : One edge 1 : Both edges	RW
	IFSR25	INT8 Interrupt Polarity Switching Bit ^{(1) (6)}	0 : One edge 1 : Both edges	RW
l	IFSR26	Interrupt Request Cause Select Bit ⁽⁵⁾	0 : CAN0 error 1 : key input	RW
	_ (b7)	Nothing is assigned. When write, When read, its content is indeten		-

NOTES:

1. When setting this bit to "1" (both edges), make sure the POL bit in the INT6IC to INT8IC registers are set to "0" (falling edge). The INT6IC to INT8IC registers are only in the 128-pin version.

In the 100-pin version, make sure the INT6 to INT8 interrupt polarity switching bitis set to "0" (falling edge). 2. Timer A2 and INT7 share the vector and interrupt control register.

When using the timer A2 interrupt, set the IFSR20 bit to "0" (Timer A2). When using INT7 interrupt, set the IFSR20 bit to "1" (INT7).

The INT7 interrupt is only in the 128-pin version. In the 100-pin version, set the IFSR20 bit to "0" (Timer A2). 3. Timer A3 and INT6 share the vector and interrupt control register.

When using the timer A3 interrupt, set the IFSR21 bit to "0" (Timer A3). When using INT6 interrupt, set the IFSR21 bit to "1" (INT6).

The INT6 interrupt is only in the 128-pin version. In the 100-pin version, set the IFSR21 bit to "0" (Timer A3). 4. Timer B1 and INT8 share the vector and interrupt control register.

When using the timer B1 interrupt, set the IFSR22 bit to "0" (Timer B1). When using INT8 interrupt, set the IFSR22 bit to "1" (INT8).

The INT8 interrupt is only in the 128-pin version. In the 100-pin version, set the IFSR22 bit to "0" (Timer B1). 5. When the PCLK6 bit in the PCLKR register = 1, CAN0 error and key input share the vector and

interrupt control register. When using the CAN0 error interrupt, set the IFSR26 bit to "0" (CAN0 error). When using the key input interrupt, set the IFSR26 bit to "1" (key input).

6. When using the INT6 to INT8 interrupts, set these bits after settig the PU37 bit in the PUR3 register to "1".

Figure 9.13 IFSR2 Register

9.7 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt request is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt.

The input level of this $\overline{\text{NMI}}$ interrupt input pin can be read by accessing the P8_5 bit in the P8 register. This pin cannot be used as an input port.

9.8 Key Input Interrupt

Of P10_4 to P10_7, a key input interrupt request is generated when input on any of the P10_4 to P10_7 pins which has had the PD10_4 to PD10_7 bits in the PD10 register set to "0" (input) goes low. Key input interrupts can be used as a key-on wake up function, the function which gets the microcomputer out of wait or stop mode. However, if you intend to use the key input interrupt, do not use P10_4 to P10_7 as analog input ports. Figure 9.14 shows the block diagram of the key input interrupt. Note, however, that while input on any pin which has had the PD10_4 to PD10_7 bits set to "0" (input mode) is pulled low, inputs on all other pins of the port are not detected as interrupts.

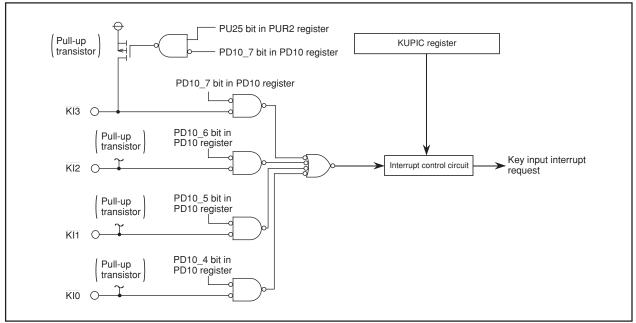


Figure 9.14 Key Input Interrupt Block Diagram

9.9 CAN0 Wake-up Interrupt

CAN0 wake-up interrupt request is generated when a falling edge is input to CRX0. The CAN0 wake-up interrupt is enabled only when the PortEn bit = 1 (CTX/CRX function) and Sleep bit = 1 (Sleep mode enabled) in the C0CTLR register. Figure 9.15 shows the block diagram of the CAN0 wake-up interrupt. Please note that the wake-up message will be lost.

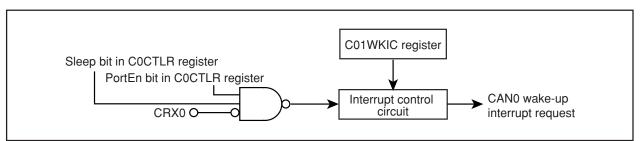


Figure 9.15 CAN0 Wake-up Interrupt Block Diagram

9.10 Address Match Interrupt

An address match interrupt request is generated immediately before executing the instruction at the address indicated by the RMADi register (i = 0 to 3). Set the start address of any instruction in the RMADi register. Use the AIER0 and AIER1 bits in the AIER register and the AIER20 and AIER21 bits in the AIER2 register to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL. For address match interrupts, the value of the PC that is saved to the stack area varies depending on the instruction being executed (refer to **9.5.7 Saving Registers**). (The value of the PC that is saved to the stack area is not the correct return address.) Therefore, follow one of the methods described below to return from the address match interrupt.

- Rewrite the content of the stack and then use the REIT instruction to return.
- Restore the stack to its previous state before the interrupt request was accepted by using the POP or similar other instruction and then use a jump instruction to return.

Table 9.6 shows the value of the PC that is saved to the stack area when an address match interrupt request is accepted.

Table 9.7 shows the relationship between address match interrupt sources and associated registers. Figure 9.16 shows the AIER, AIER2, and RMAD0 to RMAD3 registers.

Ins	struction at A	Value of PC that is Saved to Stack Area				
• 16-bit ope	eration code	Address indicated by RMADi				
Instruction	n shown belo	register + 2				
ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest	
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ.B:S	#IMM8,dest	
STNZ.B:S	#IMM8,dest	STZX.B:S	#IMM81,#IMN	VI82,dest		
CMP.B:S	#IMM8,dest	PUSHM	src	POPM dea	st	
JMPS	#IMM8	JSRS	#IMM8			
MOV.B:S	#IMM,dest (H	lowever, dest	= A0 or A1)			
Instructions	s other than	the above				Address indicated by RMADi
						register + 1

Value of PC that is saved to stack area: Refer to 9.5.7 Saving Registers.

Table 9.7 Relationship Between Address Match Interrupt Sources and Associated Registers

Address Match Interrupt Sources	Address Match Interrupt Enable Bit	Address Match Interrupt Register
Address Match Interrupt 0	AIER0	RMAD0
Address Match Interrupt 1	AIER1	RMAD1
Address Match Interrupt 2	AIER20	RMAD2
Address Match Interrupt 3	AIER21	RMAD3

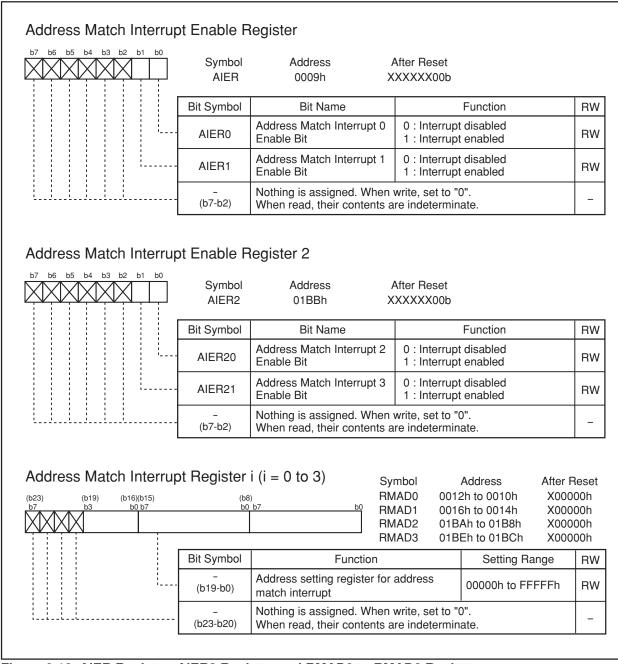


Figure 9.16 AIER Register, AIER2 Register and RMAD0 to RMAD3 Registers

10. Watchdog Timer

The watchdog timer is the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer contains a 15-bit counter which counts down the clock derived by dividing the CPU clock using the prescaler. Whether to generate a watchdog timer interrupt request or apply a watchdog timer reset as an operation to be performed when the watchdog timer underflows after reaching the terminal count can be selected using the PM12 bit in the PM1 register. The PM12 bit can only be set to "1" (watchdog timer reset). Once this bit is set to "1", it cannot be set to "0" (watchdog timer interrupt) in a program. Refer to **5.3 Watchdog Timer Reset** for details about watchdog timer reset.

When the main clock, on-chip oscillator clock or PLL clock is selected for CPU clock, the divide-by-n value for the prescaler can be selected to be 16 or 128. If a sub clock is selected for CPU clock, the divide-by-n value for the prescaler is always 2 no matter how the WDC7 bit is set. The period of watchdog timer can be calculated as given below. The period of watchdog timer is, however, subject to an error due to the prescaler.

With main clock, on-chip oscillator clock or PLL clock selected for CPU clock

Watchdog timer period = Prescaler dividing (16 or 128) × Watchdog timer count (32768) CPU clock

With sub clock selected for CPU clock

Watchdog timer period =	Prescaler dividing (2) \times Watchdog timer count (32768)
	CPU clock

For example, when CPU clock = 16 MHz and the divide-by-n value for the prescaler = 16, the watchdog timer period is approx. 32.8 ms.

The watchdog timer is initialized by writing to the WDTS register. The prescaler is initialized after reset. Note that the watchdog timer and the prescaler both are inactive after reset, so that the watchdog timer is activated to start counting by writing to the WDTS register.

In stop mode, wait mode and hold state, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released.

Figure 10.1 shows the block diagram of the watchdog timer. Figure 10.2 shows the watchdog timer-related registers.

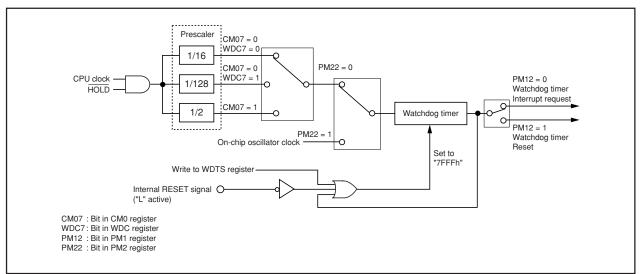


Figure 10.1 Watchdog Timer Block Diagram

b7 b6 b5 b4 b3 b2 b1 b0	Symbol WDC	Address 000Fh	After Reset 00XXXXXb	
	Bit Symbol	Bit Name	Function	RW
	(b4-b0)	High-order Bit of Watchdog Timer		RO
	(b6-b5)	Reserved Bit	Set to "0"	RW
	WDC7	Prescaler Select Bit	0 : Divided by 16 1 : Divided by 128	RW
Natchdog Timer Starl ^{67 هو}	t Register ⁽ Symbol WDTS	1) Address 000Eh	After Reset Indeterminate	DIA
		- ··		RW
		Funct	rts counting after a write instruction to	<u> </u>

Figure 10.2 WDC Register and WDTS Register

10.1 Count Source Protective Mode

In this mode, a on-chip oscillator clock is used for the watchdog timer count source. The watchdog timer can be kept being clocked even when CPU clock stops as a result of runaway.

Before this mode can be used, the following register settings are required:

- (1) Set the PRC1 bit in the PRCR register to "1" (enable writes to the PM1 and PM2 registers).
- (2) Set the PM12 bit in the PM1 register to "1" (reset when the watchdog timer underflows).
- (3) Set the PM22 bit in the PM2 register to "1" (on-chip oscillator clock used for the watchdog timer count source).
- (4) Set the PRC1 bit in the PRCR register to "0" (disable writes to the PM1 and PM2 registers).
- (5) Write to the WDTS register (watchdog timer starts counting).

Setting the PM22 bit to "1" results in the following conditions:

• The on-chip oscillator starts oscillating, and the on-chip oscillator clock becomes the watchdog timer count source.

Watchdog timer period =

Watchdog timer count (32768) on-chip oscillator clock

- The CM10 bit in the CM1 register is disabled against write. (Writing a "1" has no effect, nor is stop mode entered.)
- The watchdog timer does not stop when in wait mode or hold state.

11. DMAC

The DMAC (Direct Memory Access Controller) allows data to be transferred without the CPU intervention. Two DMAC channels are included. Each time a DMA request occurs, the DMAC transfers one (8- or 16-bit) data from the source address to the destination address. The DMAC uses the same data bus as used by the CPU. Because the DMAC has higher priority of bus control than the CPU and because it makes use of a cycle steal method, it can transfer one word (16 bits) or one byte (8 bits) of data within a very short time after a DMA request is generated. Figure 11.1 shows the block diagram of the DMAC. Table 11.1 shows the DMAC specifications. Figures 11.2 to 11.4 show the DMAC related-registers.

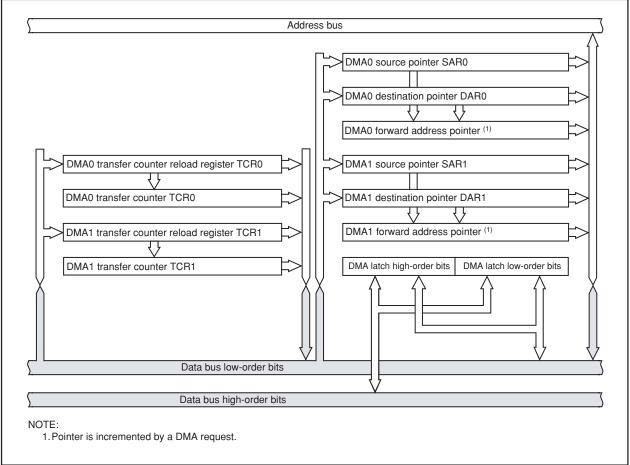


Figure 11.1 DMAC Block Diagram

A DMA request is generated by a write to the DSR bit in the DMiSL register (i = 0, 1), as well as by an interrupt request which is generated by any function specified by the DMS and DSEL3 to DSEL0 bits in the DMiSL register. However, unlike in the case of interrupt requests, DMA requests are not affected by the I flag and the interrupt control register, so that even when interrupt requests are disabled and no interrupt request can be accepted, DMA requests are always accepted. Furthermore, because the DMAC does not affect interrupts, the IR bit in the interrupt control register does not change state due to a DMA transfer.

A data transfer is initiated each time a DMA request is generated when the DMAE bit in the DMiCON register = 1 (DMA enabled). However, if the cycle in which a DMA request is generated is faster than the DMA transfer cycle, the number of transfer requests generated and the number of times data is transferred may not match. For details, refer to **11.4 DMA Request**.

Table 11.1 DMAC Specifications

lte	em	Specification				
No. of Channel	s	2 (cycle steal method)				
Transfer Memo	ry Space	 From any address in the 1-Mbyte space to a fixed address 				
		 From a fixed address to any address in the 1-Mbyte space 				
		 From a fixed address to a fixed address 				
Maximum No. of	Bytes Transferred	128 Kbytes (with 16-bit transfer) or 64 Kbytes (with 8-bit transfer)				
DMA Request I	Factors (1) (2)	Falling edge of INT0 or INT1				
		Both edge of INT0 or INT1				
		Timer A0 to timer A4 interrupt requests				
		Timer B0 to timer B5 interrupt requests				
		UART0 transfer, UART0 reception interrupt requests				
		UART1 transfer, UART1 reception interrupt requests				
		UART2 transfer, UART2 reception interrupt requests				
		SI/O3, SI/O4 interrupt requests				
		A/D conversion interrupt requests				
		Software triggers				
Channel Priorit	у	DMA0 > DMA1 (DMA0 takes precedence)				
Transfer Unit		8 bits or 16 bits				
Transfer Addre	ss Direction	forward or fixed (The source and destination addresses cannot both be				
		in the forward direction.)				
Transfer Mode	Single Transfer	Transfer is completed when the DMAi transfer counter underflows				
		after reaching the terminal count.				
	Repeat Transfer	When the DMAi transfer counter underflows, it is reloaded with the value				
		of the DMAi transfer counter reload register and a DMA transfer is				
		continued with it.				
DMA Interrupt I	Request	When the DMAi transfer counter underflowed				
Generation Tim	ning					
DMA Start Up		Data transfer is initiated each time a DMA request is generated when the				
		The DMAE bit in the DMAiCON register = 1 (enabled).				
DMA Shutdown	Single Transfer	 When the DMAE bit is set to "0" (disabled) 				
		 After the DMAi transfer counter underflows 				
	Repeat Transfer	When the DMAE bit is set to "0" (disabled)				
Reload Timing	for Forward	When a data transfer is started after setting the DMAE bit to "1" (enabled),				
Address Pointe	er and Transfer	the forward address pointer is reloaded with the value of the SARi or the				
Counter		DARi pointer whichever is specified to be in the forward direction and the				
		DMAi transfer counter is reloaded with the value of the DMAi transfer				
		counter reload register.				

i = 0, 1

NOTES:

1. DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the I flag nor by the interrupt control register.

- 2. The selectable causes of DMA requests differ with each channel.
- 3. Make sure that no DMAC-related registers (addresses 0020h to 003Fh) are accessed by the DMAC.

b7 b6 b5 b4	b3 b2 b1 b0	Symbol DM0SL		ddress 3B8h	After Reset 00h	
		Bit Symbol	Bit Na	ame	Function	RW
		DSEL0				RW
			DMA Reque	est Cause	See NOTE 1	
			Select Bit	St Ouuse		
			-			
· · · · · · · · · · · · · · · · · · ·		_ (b5-b4)	Nothing is a When read,		l /hen write, set to "0". nts are "0".	-
		DMS	DMA Request Cause Expansion Select Bit		0 : Basic cause of request 1 : Extended cause of request	RW
		DSR	Software DMA Request Bit		A DMA request is generated by setting this bit to "1" when the DMS bit is "0" (basic cause) and the DSEL3 to DSEL0 bits are "0001b" (software trigger). The value of this bit when read is "0".	
					The value of this bit when read is "0".	
1. The caus in the ma DSEL3 to DSEL0 Bi	anner describe				The value of this bit when read is "0". ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b	anner describe its DMS = 0 Falling edge	d below. (basic cause of of INT0 pin			ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma	anner describe its DMS = 0	d below. (basic cause of of INT0 pin		DMS = 1 (ex	ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b 0001b 0010b 0011b	anner describe its DMS = 0 Falling edge Software trig Timer A0 Timer A1	d below. (basic cause of of INT0 pin		DMS = 1 (ex	ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b 0001b 0010b 0011b 0100b	anner describe its DMS = 0 Falling edge Software trig Timer A0 Timer A1 Timer A2	d below. (basic cause of of INT0 pin		DMS = 1 (ex	ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b 0001b 0010b 0011b 0100b 0101b	anner describe its DMS = 0 Falling edge Software trig Timer A0 Timer A1 Timer A2 Timer A3	d below. (basic cause of of INT0 pin		DMS = 1 (ex	ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b 0001b 0010b 0011b 0100b 0101b 0101b 0101b	anner describe its DMS = 0 Falling edge Software trig Timer A0 Timer A1 Timer A2 Timer A3 Timer A4	d below. (basic cause of of INT0 pin		DMS = 1 (ex 	ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b 0001b 0010b 0101b 0101b 0110b 0111b	anner describe its DMS = C Falling edge Software trig Timer A0 Timer A1 Timer A2 Timer A3 Timer A4 Timer B0	d below. (basic cause of of INT0 pin		DMS = 1 (ex 	ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b 0001b 0010b 0101b 0100b 0110b 0110b 0111b 1000b	anner describe its DMS = C Falling edge Software trig Timer A0 Timer A1 Timer A2 Timer A3 Timer A4 Timer B0 Timer B1	d below. (basic cause of of INT0 pin		DMS = 1 (ex Two edges of Timer B3 Timer B4	ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b 0001b 0010b 0011b 0100b 0101b 0110b 0111b 1000b 1001b	anner describe its DMS = C Falling edge Software trig Timer A0 Timer A1 Timer A2 Timer A3 Timer A3 Timer B0 Timer B1 Timer B2	d below. (basic cause of of INTO pin gger		DMS = 1 (ex 	ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b 0010b 0010b 0010b 0100b 0101b 0110b 0111b 1000b 1001b 1001b	anner describe its DMS = C Falling edge Software trig Timer A0 Timer A1 Timer A2 Timer A3 Timer A4 Timer B0 Timer B1 Timer B2 UART0 tran	d below. (basic cause of of INTO pin gger smit		DMS = 1 (ex Two edges of Timer B3 Timer B4	ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b 0001b 0010b 0010b 0101b 0110b 0111b 1000b 1001b 1001b 1001b 1011b	anner describe its DMS = C Falling edge Software tri Timer A0 Timer A1 Timer A2 Timer A3 Timer A4 Timer B0 Timer B1 Timer B2 UART0 tran UART0 rece	d below. (basic cause of of INTO pin gger smit sive		DMS = 1 (ex 	ion of the DMS bit and the DSEL3 to D	SEL0 bit
1. The caus in the ma DSEL3 to DSEL0 Bi 0000b 0001b 0010b 010b 010b 010b 0111b 1000b 1011b 1000b 1011b 1010b 1011b 1010b	anner describe its DMS = 0 Falling edge Software trig Timer A0 Timer A1 Timer A2 Timer A3 Timer A4 Timer B0 Timer B1 Timer B2 UART0 tran UART0 recc UART2 tran	d below. (basic cause of of INTO pin gger smit sive smit		DMS = 1 (ex 	ion of the DMS bit and the DSEL3 to D	SEL0 bit
in the ma DSEL3 to DSEL0 Bi 0000b 0001b 0010b 0010b 0101b 0100b 0111b 1000b 1001b 1001b 1001b 1011b	anner describe its DMS = C Falling edge Software tri Timer A0 Timer A1 Timer A2 Timer A3 Timer A4 Timer B0 Timer B1 Timer B2 UART0 tran UART0 rece	d below. (basic cause of of INTO pin gger smit sive smit sive		DMS = 1 (ex 	ion of the DMS bit and the DSEL3 to D	SEL0 bit

Figure 11.2 DM0SL Register

DMA1 Request Cau	se Select R	egister		
b7 b6 b5 b4 b3 b2 b1 b	Symbol DM1SL	Address 03BAh	After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	- DSEL0			RW
	- DSEL1	DMA Request Cause	See NOTE 1	
	- DSEL2	Select Bit		
	DSEL3			
	 (b5-b4)	Nothing is assigned. When write, set to "0". When read, their contents are "0".		
	DMS	DMA Request Cause Expansion Select Bit	0 : Basic cause of request 1 : Extended cause of request	RW
	DSR	Software DMA Request Bit	A DMA request is generated by setting this bit to "1" when the DMS bit is "0" (basic cause) and the DSEL3 to DSEL0 bits are "0001b" (software trigger). The value of this bit when read is "0".	RW

NOTE:

1. The causes of DMA1 requests can be selected by a combination of the DMS bit and the DSEL3 to DSEL0 bits in the manner described below.

DSEL3 to DSEL0 Bits	DMS = 0 (basic cause of request)	DMS = 1 (extended cause of request)
0000b	Falling edge of INT1 pin	—
0001b	Software trigger	—
0010b	Timer A0	-
0011b	Timer A1	—
0100b	Timer A2	—
0101b	Timer A3	SI/O3
0110b	Timer A4	SI/O4
0111b	Timer B0	Two edges of INT1 pin
1000b	Timer B1	-
1001b	Timer B2	—
1010b	UART0 transmit	—
1011b	UART0 receive/ACK0	—
1100b	UART2 transmit	—
1101b	UART2 receive/ACK2	—
1110b	A/D conversion	—
1111b	UART1 transmit/ACK1	—

DMAi Control Register (i = 0, 1)

•	· · /			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol DM0CON DM1CON		After Reset 00000X00b 00000X00b	
	Bit Symbol	Bit Name	Function	RW
	DMBIT	Transfer Unit Bit Select Bit	0 : 16 bits 1 : 8 bits	RW
	DMASL	Repeat Transfer Mode Select Bit	0 : Single transfer 1 : Repeat transfer	RW
	DMAS	DMA Request Bit	0 : DMA not requested 1 : DMA requested	RW ⁽¹⁾
	DMAE	DMA Enable Bit	0 : Disabled 1 : Enabled	RW
	DSD	Source Address Direction Select Bit ⁽²⁾	0 : Fixed 1 : Forward	RW
	DAD	Destination Address Direction Select Bit ⁽²⁾	0 : Fixed 1 : Forward	RW
· · · · · · · · · · · · · · · · · · ·	_ (b7-b6)	Nothing is assigned. When write, set to "0". When read, their contents are "0".		-
NOTES:				

1. The DMAS bit can be set to "0" by writing "0" in a program. (This bit remains unchanged even if "1" is written.) 2. At least one of the DAD and DSD bits must be "0" (address direction fixed).

Figure 11.3 DM1SL Register, DM0CON and DM1CON Registers

(b23) (b19 b7 b3) (b16)(b15) b0 b7	(b8) b0 b7	b0	Symbol	A	ddress	After F	Rese
				SAR0 SAR1		h to 0020h h to 0030h	Indeterr Indeterr	
		Func	tion			Setting	Range	RV
		- Set the source address of the	ransfer			00000h to F	FFFFh	R١
		Nothing is assigned. When When read, their contents a		to "0".				-
DMiCO If the DS If the DS this reg	N register is "0" SD bit is "1" (forv SD bit is "1" and ister. Otherwis	CON register is "0" (fixed), thi (DMA disabled). vard direction), this register ca the DMAE bit is "1" (DMA ena se, the value written to it ca	an be writt Ibled), the	en to at an DMAi forwa	/ time.			
		ter (i = 0, 1) (1) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	b0	Symbol DAR0 DAR1	0026	ddress h to 0024h h to 0034h	After F Indeterr Indeterr	nina
		Func	tion			Setting	Range	R
		- Set the destination address	of transfe	r		00000h to F	FFFFh	R
		Nothing is assigned. When When read, their contents a		to "0".				-
DMiCO If the DA If the DA this reg	N register is "0" AD bit is "1" (forv AD bit is "1" and	. ,	an be writt bled), the	en to at an DMAi forwa	/ time. rd add A 0025			d fro Reso nina
		Func	tion	топп	003	Setting		R
		Set the transfer count minus The written value is stored in reload register, and when the	s 1. n the DMA e DMAE b		CON	0000h to Fl		B

Figure 11.4 SAR0 and SAR1 Registers, DAR0 and DAR1 Registers, TCR0 and TCR1 Registers

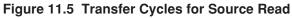
11.1 Transfer Cycle

The transfer cycle consists of a memory or SFR read (source read) bus cycle and a write (destination write) bus cycle. The number of read and write bus cycles is affected by the source and destination addresses of transfer. The bus cycle itself is extended by a software wait.

11.1.1 Effect of Source and Destination Addresses

If the transfer unit and data bus both are 16 bits and the source address of transfer begins with an odd address, the source read cycle consists of one more bus cycle than when the source address of transfer begins with an even address.

Similarly, if the transfer unit and data bus both are 16 bits and the destination address of transfer begins with an odd address, the destination write cycle consists of one more bus cycle than when the destination address of transfer begins with an even address.


11.1.2 Effect of Software Wait

For memory or SFR accesses in which one or more software wait states are inserted, the number of bus cycles required for that access increases by an amount equal to software wait states.

Figure 11.5 shows the example of the cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating transfer cycles, take into consideration each condition for the source read and the destination write cycle, respectively. For example, when data is transferred in 16- bit unit using an 8-bit bus ((2) on Figure 11.5), two source read bus cycles and two destination write bus cycles are required.

BCLK											
Address bus	CPU use	Source	Des	stination	Dun cycl		i	CPU u	ise	<u></u>	
RD signal											
WR signal											
Data bus	CPU use	s	ource	Destir	ation	Dumr cycle	ny	CPU	JSe		
transfer u BCLK	transfer unit is ⁻ nit is 16 bits and	16 bits ar d an 8-bit	id the sou bus is us	urce ad	dress of	trans		n odd a	address,	or wh	en the
Address bus	CPU use	Source	Source +	1	Destination	X	Dummy cycle	X	CPU use		
RD signal											
WR signal		-									
Data bus	CPU use	x s	ource Sou	urce + 1	Desti	nation		immy k	CPU use	; ;	
BCLK			ource		Destination		Dummy cycle		CPU use		
Address	CPU use				oounation	/:\	cycie	/\		; ;	
bus	CPU use	<u> </u>									
bus RD signal	CPU use										
bus RD signal WR signal Data			Source		Destir	ation	Du	mmy V	CPILuse		
bus RD signal WR signal	CPU use		Source		Destir	nation	Du	mmy cle	CPU use	2	
bus) (2) ha	<u> </u>		/ <u>\</u> cy	cle /	CPU use	2	
bus	CPU use) (2) ha	<u> </u>		/ <u>\</u> cy	cle /	CPU use	· ·	
bus RD signal WR signal Data bus 4) When the	CPU use				<u> </u>		te inser	cle /		 	CPU use
bus RD signal WR signal Data bus 4) When the BCLK Address	CPU use		conditior		is one wa		te inser	ted		 	CPU use
bus RD signal WR signal Data bus 4) When the BCLK Address bus	CPU use		conditior		is one wa		te inser	ted		 	CPU use
bus RD signal WR signal Data bus 4) When the BCLK Address bus RD signal	CPU use		conditior		Source + 1		te inser	ted		 	my V CPUL

11.2 DMA Transfer Cycles

Any combination of even or odd transfer read and write addresses is possible.

Table 11.2 shows the number of DMA transfer cycles. Table 11.3 shows the coefficient j, k.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles $\times j$ + No. of write cycles $\times k$

Table 11.2 DMA Transfer Cycles

Transfer Unit	Access Address	No. of Read Cycles	No. of Write Cycles
8-bit Transfer	Even	1	1
(DMBIT =1)	Odd	1	1
16-bit Transfer	Even	1	1
(DMBIT = 0)	Odd	2	2

Table 11.3 Coefficient j, k

	Internal ROM, RAM		SFR	
	No Wait	With Wait	1 Wait (1)	2 Waits ⁽¹⁾
j	1	2	2	3
k	1	2	2	3

NOTE:

1. Depends on the set value of the PM20 bit in the PM2 register.

11.3 DMA Enable

When a data transfer starts after setting the DMAE bit in the DMiCON register (i = 0, 1) to "1" (enabled), the DMAC operates as follows:

- (1) Reload the forward address pointer with the SARi register value when the DSD bit in the DMiCON register is "1" (forward) or the DARi register value when the DAD bit in the DMiCON register is "1" (forward).
- (2) Reload the DMAi transfer counter with the DMAi transfer counter reload register value.

If the DMAE bit is set to "1" again while it remains set, the DMAC performs the above operation. However, if a DMA request may occur simultaneously when the DMAE bit is being written, follow the steps below.

Step 1: Write "1" to the DMAE bit and DMAS bit in the DMiCON register simultaneously.

Step 2: Make sure that the DMAi is in an initial state as described above (1) and (2) in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

11.4 DMA Request

The DMAC can generate a DMA request as triggered by the cause of request that is selected with the DMS and DSEL3 to DSEL0 bits in the DMiSL register (i = 0, 1) on either channel. Table 11.4 shows the timing at which the DMAS bit changes state.

Whenever a DMA request is generated, the DMAS bit is set to "1" (DMA requested) regardless of whether or not the DMAE bit is set. If the DMAE bit was set to "1" (enabled) when this occurred, the DMAS bit is set to "0" (DMA not requested) immediately before a data transfer starts. This bit cannot be set to "1" in a program (it can only be set to "0").

The DMAS bit may be set to "1" when the DMS or the DSEL3 to DSEL0 bits change state. Therefore, always be sure to set the DMAS bit to "0" after changing the DMS or the DSEL3 to DSEL0 bits.

Because if the DMAE bit is "1", a data transfer starts immediately after a DMA request is generated, the DMAS bit in almost all cases is "0" when read in a program. Read the DMAE bit to determine whether the DMAC is enabled.

	DMAS Bit in DMiCON Register				
DMA Factor	Timing at which the bit is set to "1"	Timing at which the bit is set to "0"			
Software Trigger	When the DSR bit in the DMiSL register	Immediately before a data transfer starts			
	is set to "1"	• When set by writing "0" in a program			
Peripheral Function	When the interrupt control register for				
	the peripheral function that is selected				
	by the DSEL3 to DSEL0 and DMS bits				
	in the DMiSL register has its IR bit set to "1".				

Table 11.4	Timing at	t Which	DMAS bi	t Changes State
	i iiiiiiig u			Containges Otate

i = 0, 1

11.5 Channel Priority and DMA Transfer Timing

If both DMA0 and DMA1 are enabled and DMA transfer request signals from DMA0 and DMA1 are detected active in the same sampling period (one period from a falling edge to the next falling edge of BCLK), the DMAS bit on each channel is set to "1" (DMA requested) at the same time. In this case, the DMA requests are arbitrated according to the channel priority, DMA0 > DMA1.

The following describes DMAC operation when DMA0 and DMA1 requests are detected active in the same sampling period.

Figure 11.6 shows an example of DMA transfer effected by external factors.

In Figure 11.6, DMA0 request having priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, a bus arbitration is returned to the CPU. When the CPU has completed one bus access, a DMA1 transfer starts. After one DMA1 transfer is completed, the bus arbitration is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DMAS bit. Therefore, when DMA requests, as DMA1 in Figure 11.6, occurs more than one time, the DMAS bit is set to "0" as soon as getting the bus arbitration. The bus arbitration is returned to the CPU when one transfer is completed.

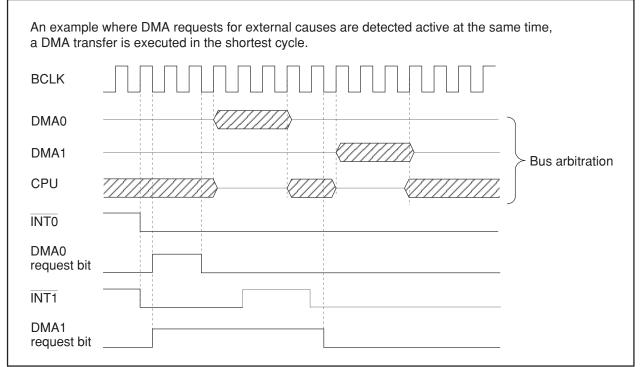


Figure 11.6 DMA Transfer by External Factors

12. Timers

Eleven 16-bit timers, each capable of operating independently of the others, can be classified by function as either timer A (five) and timer B (six). The count source for each timer acts as a clock, to control such timer operations as counting, reloading, etc.

Figures 12.1 and 12.2 show block diagrams of Timer A and Timer B configuration, respectively.

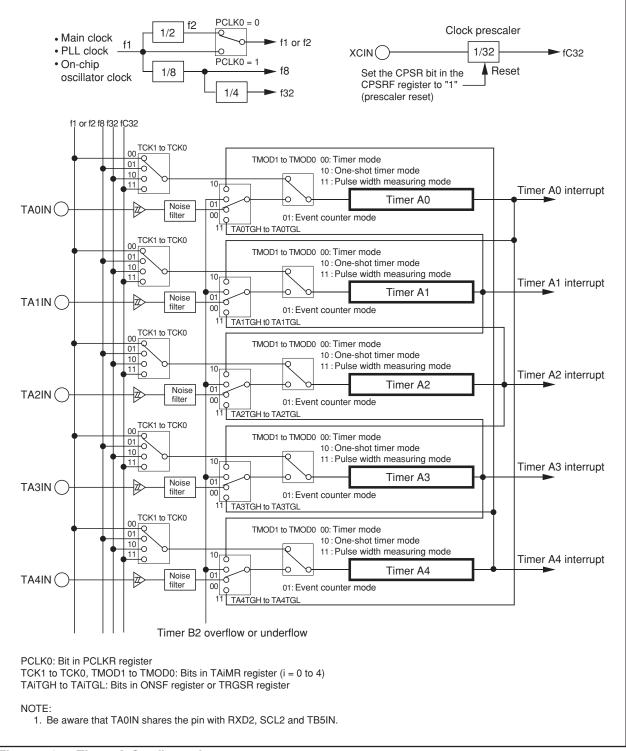


Figure 12.1 Timer A Configuration

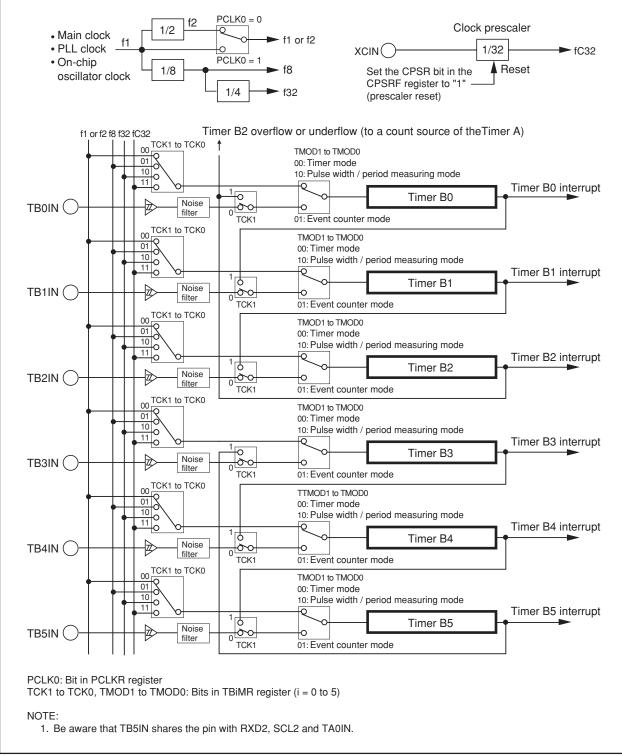


Figure 12.2 Timer B Configuration

REJ09B0126-0102

12.1 Timer A

Figure 12.3 shows a block diagram of the timer A. Figures 12.4 to 12.6 show the timer A-related registers. The timer A supports the following four modes. Except in event counter mode, timers A0 to A4 all have the same function. Use the TMOD1 to TMOD0 bits in the TAiMR register (i = 0 to 4) to select the desired mode.

The timer counts an internal count source.

- Timer mode:
- Event counter mode: The timer counts pulses from an external device or overflows and underflows of other timers.
- One-shot timer mode: The timer outputs a pulse only once before it reaches the minimum count "0000h."
- Pulse width modulation mode: The timer outputs pulses in a given width successively.

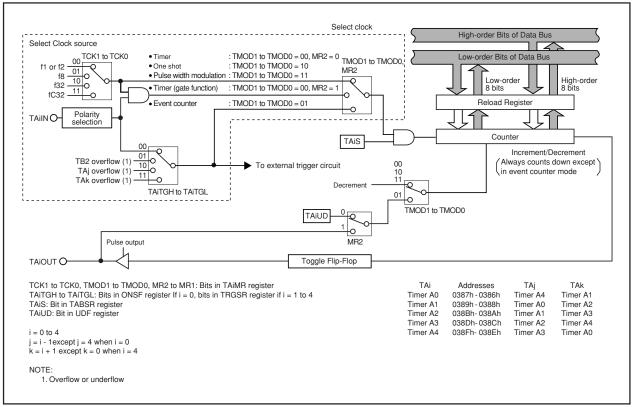


Figure 12.3 Timer A Block Diagram

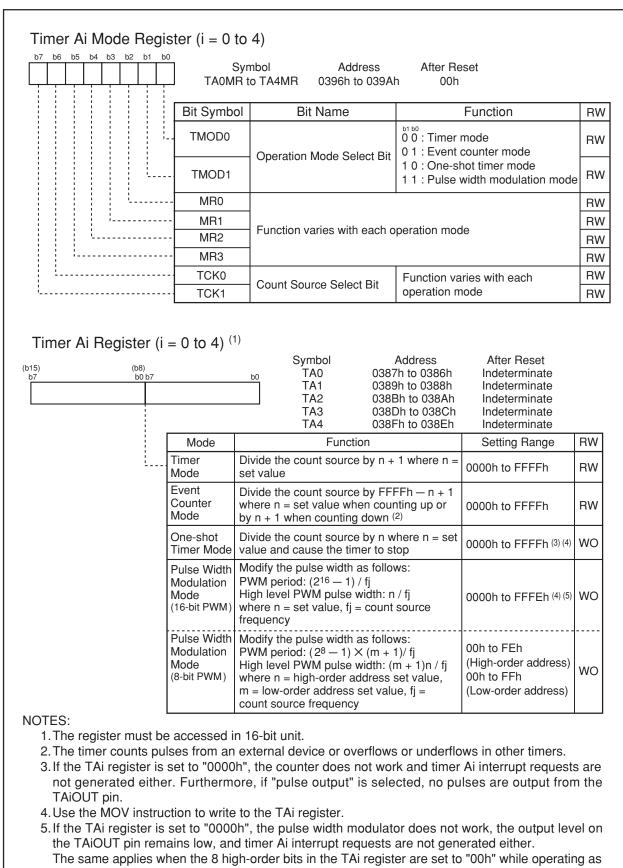
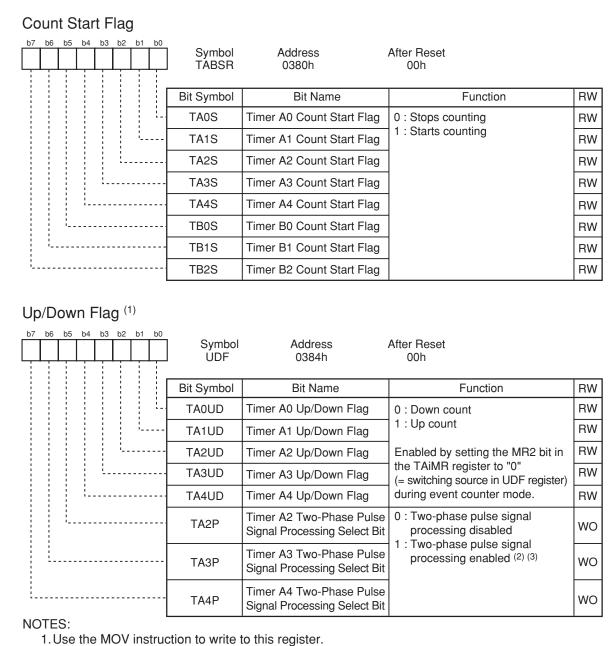



Figure 12.4 TA0MR to TA4MR Registers and TA0 to TA4 Registers

2. Make sure the port direction bits for the TA2IN to TA4IN and TA2OUT to TA4OUT pins are set to "0" (input mode).

3. When not using the two-phase pulse signal processing function, set the corresponding bit to timer A2 to timer A4 to "0".

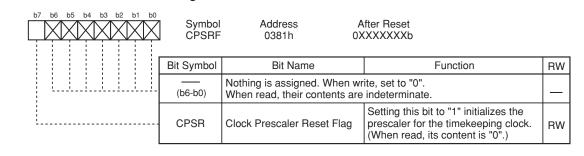
Figure 12.5 TABSR Register and UDF Register

One-Shot Start Flag				
b7 b6 b5 b4 b3 b2 b1 b0	Symbo ONSF		After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
· · · · · · · · · · · · · · · · · · ·	TA0OS	Timer A0 One-Shot Start Flag	The timer starts counting by setting	RW
	TA1OS	Timer A1 One-Shot Start Flag	this bit to "1" while the TMOD1 to TMOD0 bits in the TAiMR register (i =	RW
	TA2OS	Timer A2 One-Shot Start Flag	0 to 4) = 10b (one-shot timer mode)	RW
	TA3OS	Timer A3 One-Shot Start Flag	and the MR2 bit in the TAiMR register = 0 (TAiOS bit enabled).	RW
	TA4OS	Timer A4 One-Shot Start Flag	When read, its content is "0".	RW
	TAZIE	Z-phase Input Enable Bit	0 : Z-phase input disabled 1 : Z-phase input enabled	RW
	TA0TGL	Timer A0 Event/Trigger	^{b7 b6} 0 0 : Input on TA0IN is selected ⁽¹⁾ 0 1 : TB2 is selected ⁽²⁾	RW
	TA0TGH	Select Bit	1 0 : TA4 is selected ⁽²⁾ 1 1 : TA1 is selected ⁽²⁾	RW

NOTES:

1. Make sure the PD7_1 bit in the PD7 register is set to "0" (input mode).

2. Over flow or under flow.


Trigger Select Register

	-				
b7 b6 b5 b4 b	b3 b2 b1 b0	Symbol TRGSR		After Reset 00h	
		Bit Symbol	Bit Name	Function	RW
		TA1TGL	Timer A1 Event/Trigger	^{b1 b0} 0 0 : Input on TA1IN is selected ⁽¹⁾ 0 1 : TB2 is selected ⁽²⁾	RW
		TA1TGH	Select Bit	1 0 : TA0 is selected ⁽²⁾ 1 1 : TA2 is selected ⁽²⁾	RW
		TA2TGL	Timer A2 Event/Trigger	^{b3 b2} 0 0 : Input on TA2IN is selected ⁽¹⁾ 0 1 : TB2 is selected ⁽²⁾	RW
		TA2TGH	Select Bit	1 0 : TA1 is selected ⁽²⁾ 1 1 : TA3 is selected ⁽²⁾	RW
		TA3TGL	Timer A3 Event/Trigger	^{b5 b4} 0 0 : Input on TA3IN is selected ⁽¹⁾ 0 1 : TB2 is selected ⁽²⁾	RW
		TA3TGH	Select Bit	1 0 : TA2 is selected ⁽²⁾ 1 1 : TA4 is selected ⁽²⁾	RW
		TA4TGL	Timer A4 Event/Trigger	^{b7 b6} 0 0 : Input on TA4IN is selected ⁽¹⁾ 0 1 : TB2 is selected ⁽²⁾	RW
		TA4TGH	Select Bit	1 0 : TA3 is selected ⁽²⁾ 1 1 : TA0 is selected ⁽²⁾	RW

NOTES:

1. Make sure the port direction bits for the TA1IN to TA4IN pins are set to "0" (input mode). 2. Over flow or under flow.

Clock Prescaler Reset Flag

Figure 12.6 ONSF Register, TRGSR Register and CPSRF Register

12.1.1 Timer Mode

In timer mode, the timer counts a count source generated internally. Table 12.1 lists specifications in timer mode. Figure 12.7 shows TAiMR register in timer mode.

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count
	• When the timer underflows, it reloads the reload register contents and continues counting
Divide Ratio	1/(n+1) n: set value of the TAi register 0000h to FFFFh
Count Start Condition	Set the TAiS bit in the TABSR register to "1" (start counting)
Count Stop Condition	Set the TAiS bit to "0" (stop counting)
Interrupt Request Generation Timing	Timer underflow
TAiIN Pin Function	I/O port or gate input
TAiOUT Pin Function	I/O port or pulse output
Read from Timer	Count value can be read by reading the TAi register
Write to Timer	When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select Function	Gate function
	Counting can be started and stopped by an input signal to TAiIN pin
	Pulse output function
	Whenever the timer underflows, the output polarity of TAiOUT pin is inverted.
	When TAiS bit is set to "0 " (stop counting), the pin outputs a low.

Table 12.1 Specifications in T	imer Mode
--------------------------------	-----------

i = 0 to 4

7 b6 b5 b4 b3 b2 b1 b0 0<		nbol Address o TA4MR 0396h to 039	After Reset 9Ah 00h	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operation Mode	b1 b0	RW
	TMOD1	Select Bit	0 0 : Timer mode	RW
	MR0	Pulse Output Function Select Bit	0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (TAiOUT pin is a pulse output pin)	RW
	MR1		b4 b3 Gate function not available 0 0 : } (TAIIN pin functions as I/O port)	RW
	MR2	Gate Function Select Bit	 Counts while input on the TAilN pin is low ⁽¹⁾ Counts while input on the TAilN pin is high ⁽¹⁾ 	RW
	MR3	Set to "0" in timer mode		RW
	TCK0	Count Source Select Bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
	TCK1	Count Source Select Bit	1 0 : f32 1 1 : fC32	RW

Figure 12.7 TA0MR to TA4MR Registers in Timer Mode

12.1.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timers A2, A3 and A4 can count two-phase external signals. Table 12.2 lists specifications in event counter mode (when not processing two-phase pulse signal). Figure 12.8 shows TAiMR register in event counter mode (when not processing two-phase pulse signal). Table 12.3 lists specifications in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4). Figure 12.9 shows TA2MR to TA4MR registers in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4).

•	
Item	Specification
Count Source	• External signals input to TAilN pin (effective edge can be selected in program)
	 Timer B2 overflows or underflows,
	Timer Aj overflows or underflows,
	Timer Ak overflows or underflows
Count Operation	• Up-count or down-count can be selected by external signal or program
	• When the timer overflows or underflows, it reloads the reload register
	contents and continues counting. When operating in free-running mode,
	the timer continues counting without reloading.
Divided Ratio	1/ (FFFFh - n + 1) for up-count
	1/ (n + 1) for down-count n : set value of the TAi register 0000h to FFFFh
Count Start Condition	Set the TAIS bit in the TABSR register to "1" (start counting)
Count Stop Condition	Set the TAiS bit to "0" (stop counting)
Interrupt Request Generation Timing	Timer overflow or underflow
TAiIN Pin Function	I/O port or count source input
TAiOUT Pin Function	I/O port, pulse output, or up/down-count select input
Read from Timer	Count value can be read by reading the TAi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select Function	Free-run count function
	Even when the timer overflows or underflows, the reload register content
	is not reloaded to it
	Pulse output function
	Whenever the timer underflows or underflows, the output polarity of
	TAiOUT pin is inverted.
	When TAiS bit is set to "0" (stop counting), the pin outputs a low.
$i = 0 t_0 4$	

Table 12.2	Specifications in Event	Counter Mode (v	when not a	processina two	-phase	pulse sid	nal)
				proceeding the	pilade	pa.00 0.9	

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

7 b6 b5 b4 b3 b2 b 0 0 0		TAC	Symbol Addr MR to TA4MR 0396h to		
	Ī	Bit Symbol	Bit Name	Function	RW
	[TMOD0	Onevetion Made Calent Dit	b1 b0	RW
		TMOD1	Operation Mode Select Bit	0 1 : Event counter mode ⁽¹⁾	RW
		MR0	Pulse Output Function Select Bit	 0 : Pulse is not output (TAiOUT pin functions as I/O port) 1 : Pulse is output (TAiOUT pin functions as pulse output pin) 	RW
		MR1	Count Polarity Select Bit (2)	0 : Counts falling edge of external signal 1 : Counts rising edge of external signal	RW
		MR2	Up/Down Switching Cause Select Bit	0 : UDF register 1 : Input signal to TAiOUT pin ⁽³⁾	RW
	[MR3	Set to "0" in event counter n	node	RW
		TCK0	Count Operation Type Select Bit	0 : Reload type 1 : Free-run type	RW
	[TCK1	Can be "0" or "1" when not	using two-phase pulse signal processing.	RW

Effective when the TAiTGH and TAiTGL bits in the ONSF or TRGSR register are "00b" (TAiIN pin input).
 Count down when input on TAiOUT pin is low or count up when input on that pin is high. The port direction bit for TAiOUT pin is set to "0" (input mode).

Figure 12.8 TA0MR to TA4MR Registers in Event Counter Mode (when not using two-phase pulse signal processing)

Table 12.3	Specifications in Event	Counter Mode (when	processing two-ph	nase pulse sig	nal with timers A2, A3 and A4)
------------	-------------------------	--------------------	-------------------	----------------	--------------------------------

Item	Specification			
Count Source	Two-phase pulse signals input to TAiIN or TAiOUT pins			
Count Operation	Up-count or down-count can be selected by two-phase pulse signal			
•	• When the timer overflows or underflows, it reloads the reload register			
	contents and continues counting. When operating in free-running mode,			
	the timer continues counting without reloading.			
Divide Ratio	/ (FFFFh - n + 1) for up-count			
	1/(n + 1) for down-count n : set value of the TAi register 0000h to FFFFh			
Count Start Condition	Set the TAiS bit in the TABSR register to "1" (start counting)			
Count Stop Condition	Set the TAiS bit to "0" (stop counting)			
•	Timer overflow or underflow			
TAiIN Pin Function	Two-phase pulse input			
TAiOUT Pin Function	Two-phase pulse input			
Read from Timer	Count value can be read by reading the TAi register			
Write to Timer	• When not counting and until the 1st count source is input after counting start			
	Value written to TAi register is written to both reload register and counter			
	• When counting (after 1st count source input)			
	Value written to TAi register is written to reload register			
	(Transferred to counter when reloaded next)			
Select Function ⁽¹⁾	Normal processing operation (timer A2 and timer A3)			
	The timer counts up rising edges or counts down falling edges on TAjIN			
	pin when input signals on TAjOUT pin is "H".			
	Up- Up- Up- Down- Down- count count count count count			
	• Multiply-by-4 processing operation (timer A3 and timer A4)			
	If the phase relationship is such that TAkIN pin goes "H" when the input			
	signal on TAkOUT pin is "H", the timer counts up rising and falling edges			
	on TAkOUT and TAkIN pins. If the phase relationship is such that TAkIN			
	pin goes "L" when the input signal on TAkOUT pin is "H", the timer counts			
	down rising and falling edges on TAkOUT and TAkIN pins.			
	Count up all edges Count down all edges			
	Count up all edges Count down all edges			
	Counter initialization by Z-phase input (timer A3)			
	The timer count value is initialized to "0" by Z-phase input.			
i = 2 to 4	·			
j = 2, 3				
k = 3, 4				

NOTE:

1. Only timer A3 is selectable. Timer A2 is fixed to normal processing operation, and timer A4 is fixed to multiply-by-4 processing operation.

b6 b5 b4 b3 b2 b1 0 1 0 0 0	1 Sym	bol Address to TA4MR 0398h to 039	After Reset Ah 00h	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operation Mode Select Bit	b1 b0	RW
	TMOD1		0 1 : Event counter mode	RW
· · · · · · · · · · · · · · · · · · ·	···· MR0	To use two-phase pulse sig	nal processing, set this bit to "0".	RW
	MR1			RW
	MR2	To use two-phase pulse sig	nal processing, set this bit to "1".	RW
<u> </u>	MR3	To use two-phase pulse sig	nal processing, set this bit to "0".	RW
	ТСК0	Count Operation Type Select Bit	0 : Reload type 1 : Free-run type	RW
	ТСК1	Two-Phase Pulse Signal Processing Operation Select Bit ⁽¹⁾ ⁽²⁾	0 : Normal processing operation 1 : Multiply-by-4 processing operation	RW

• Set the TAITGH and TAITGL bits in the TRGSR register to "00b" (TAIIN pin input).

• Set the port direction bits for TAiIN and TAiOUT to "0" (input mode).

Figure 12.9 TA2MR to TA4MR Registers in Event Counter Mode (when using two-phase pulse signal processing with timer A2, A3 or A4)

12.1.2.1 Counter Initialization by Two-Phase Pulse Signal Processing

This function initializes the timer count value to "0" by Z-phase (counter initialization) input during twophase pulse signal processing.

This function can only be used in timer A3 event counter mode during two-phase pulse signal processing, free-running type, x4 processing, with Z-phase entered from the ZP pin.

Counter initialization by Z-phase input is enabled by writing "0000h" to the TA3 register and setting the TAZIE bit in the ONSF register to "1" (Z-phase input enabled).

Counter initialization is accomplished by detecting Z-phase input edge. The active edge can be selected to be the rising or falling edge by using the POL bit in the INT2IC register. The Z-phase pulse width applied to the INT2 pin must be equal to or greater than one clock cycle of the timer A3 count source.

The counter is initialized at the next count timing after recognizing Z-phase input. Figure 12.10 shows the relationship between the two-phase pulse (A phase and B phase) and the Z-phase.

If timer A3 overflow or underflow coincides with the counter initialization by Z-phase input, a timer A3 interrupt request is generated twice in succession. Do not use the timer A3 interrupt when using this function.

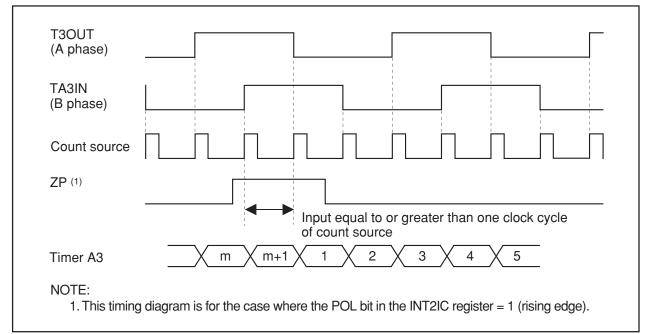


Figure 12.10 Two-phase Pulse (A phase and B phase) and Z Phase

12.1.3 One-shot Timer Mode

In one-shot timer mode, the timer is activated only once by one trigger. When the trigger occurs, the timer starts up and continues operating for a given period. Table 12.4 lists specifications in one-shot timer mode. Figure 12.11 shows the TAiMR register in the one-shot timer mode.

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count
	• When the counter reaches 0000h, it stops counting after reloading a new value
	• If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide Ratio	1/n n : set value of the TAi register 0000h to FFFFh
	However, the counter does not work if the divide-by-n value is set to 0000h.
Count Start Condition	The TAiS bit in the TABSR register = 1 (start counting) and one of the following
	triggers occurs.
	 External trigger input from the TAiIN pin
	Timer B2 overflow or underflow,
	Timer Aj overflow or underflow,
	Timer Ak overflow or underflow
	• The TAiOS bit in the ONSF register is set to "1" (timer starts)
Count Stop Condition	When the counter is reloaded after reaching "0000h"
	 TAiS bit is set to "0" (stop counting)
Interrupt Request Generation Timing	When the counter reaches "0000h"
TAiIN Pin Function	I/O port or trigger input
TAiOUT Pin Function	I/O port or pulse output
Read from Timer	An indeterminate value is read by reading the TAi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select Function	Pulse output function
	The timer outputs a low when not counting and a high when counting.

Table 12.4 Specifications in	One-shot Timer Mode
------------------------------	---------------------

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

b6 b5 b4 b3 b2 b1 b0 0 1 1 0	Sym TA0MR t	nbol Address o TA4MR 0396h to 039	After Reset DAh 00h	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operation Mode Select Bit		
	TMOD1	Operation wode Select bit	1 0 : One-shot timer mode	RW
	MR0	Pulse Output Function Select Bit	 0 : Pulse is not output (TAiOUT pin functions as I/O port) 1 : Pulse is output (TAiOUT pin functions as a pulse output pin) 	RW
	MR1	External Trigger Select Bit ⁽¹⁾	0 : Falling edge of input signal to TAilN pin ⁽²⁾ 1 : Rising edge of input signal to TAilN pin ⁽²⁾	RW
	MR2	Trigger Select Bit	0 : TAiOS bit is enabled 1 : Selected by TAiTGH to TAiTGL bits	RW
	MR3	Set to "0" in one-shot time	er mode	RW
	TCK0	Count Source Select Bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	
	TCK1	Count Source Select Bit	1 0 : f32 1 1 : fC32	RW

12.1.4 Pulse Width Modulation (PWM) Mode

In pulse width modulation mode, the timer outputs pulses of a given width in succession. The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator.

Table 12.5 lists specifications in pulse width modulation mode. Figure 12.12 shows TAiMR register in pulse width modulation mode.

Figures 12.13 and 12.14 show examples of how a 16-bit pulse width modulator operates and how an 8-bit pulse width modulator operates, respectively.

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	• Down-count (operating as an 8-bit or a 16-bit pulse width modulator)
	• The timer reloads a new value at a rising edge of PWM pulse and continues counting
	 The timer is not affected by a trigger that occurs during counting
16-bit PWM	High level width n / fj n : set value of the TAi register
	• Cycle time (2 ¹⁶ -1) / fj fixed fj : count source frequency (f1, f2, f8, f32, fC32)
8-bit PWM	• High level width $n \times (m+1) / f_j$ n : set value of the TAi register high-order address
	• Cycle time $(2^{8}-1) \times (m+1) / fj m$: set value of the TAi register low-order address
Count Start Condition	The TAiS bit in the TABSR register is set to "1" (start counting)
	 The TAiS bit = 1 and external trigger input from the TAiIN pin
	 The TAiS bit = 1 and one of the following external triggers occurs
	Timer B2 overflow or underflow,
	Timer Aj overflow or underflow,
	Timer Ak overflow or underflow
Count Stop Condition	The TAiS bit is set to "0" (stop counting)
Interrupt Request Generation Timing	On the falling edge of the PWM pulse
TAiIN Pin Function	I/O port or trigger input
TAiOUT Pin Function	Pulse output
Read from Timer	An indeterminate value is read by reading the TAi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)

Table 12.5 Specifications in Pulse Width Modulation Mode

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

b6 b5 b4 b3 b2 b1 b0 1 1 1 1 1 1 1		ymbol Addres R to TA4MR 0396h to 0		
	Bit Symbol	Bit Name	Function	RW
	TMOD0 TMOD1	Operation Mode Select Bit	1 1 : Pulse width modulation mode	RW RW
	MR0	Pulse Output Function Select Bit ⁽³⁾	0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (TAiOUT pin is a pulse output pin)	RW
	MR1	External Trigger Select Bit ⁽¹⁾	0 : Falling edge of input signal to TAilN pin ⁽²⁾ 1 : Rising edge of input signal to TAilN pin ⁽²⁾	RW
	MR2	Trigger Select Bit	0 : Write "1" to TAiS bit in the TABSR register 1 : Selected by TAiTGH to TAiTGL bits	RW
	MR3	16/8-Bit Pulse Width Modulation Mode Select Bit	0 : Functions as a 16-bit pulse width modulator 1 : Functions as an 8-bit pulse width modulator	RW
	TCK0	Count Source Select Bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
	TCK1		1 0 : f32 1 1 : fC32	RW

1. Effective when the TAITGH and TAITGL bits in the ONSF or TRGSR register are "00b" (TAIIN pin input).

2. The port direction bit for the TAIIN pin is set to "0" (input mode).

3.Set to "1" (pulse is output), PWM pulse is output.

Figure 12.12 TA0MR to TA4MR Registers in Pulse Width Modulation Mode

M16C/6N Group (M16C/6NL, M16C/6NN)

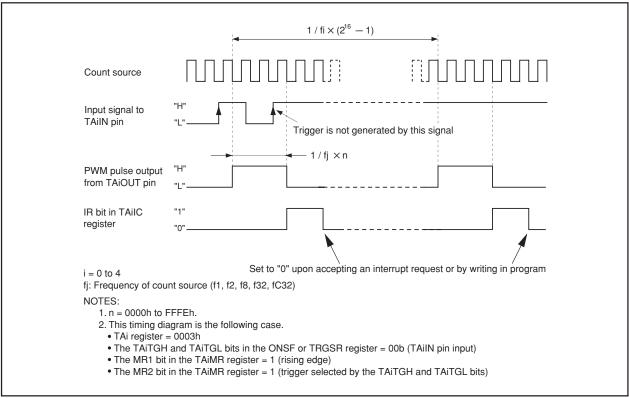


Figure 12.13 Example of 16-bit Pulse Width Modulator Operation

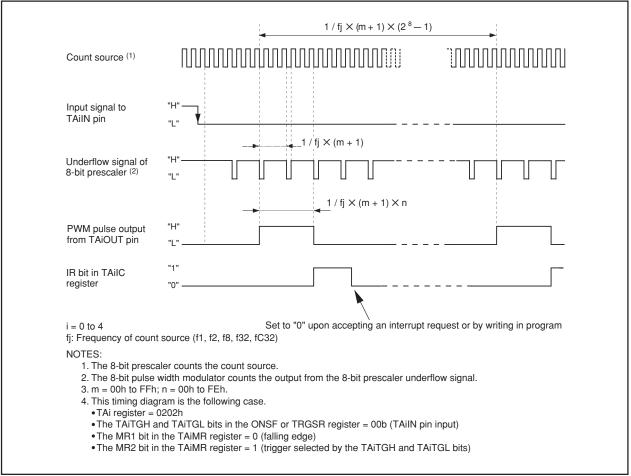


Figure 12.14 Example of 8-bit Pulse Width Modulator Operation

12.2 Timer B

Figure 12.15 shows a block diagram of the timer B. Figures 12.16 and 12.17 show the timer B-related registers.

Timer B supports the following three modes. Use the TMOD1 and TMOD0 bits in the TBiMR register (i = 0 to 5) to select the desired mode.

- Timer mode
- Event counter mode

- : The timer counts an internal count source.
- : The timer counts pulses from an external device or over flows or underflows of other timers.
- Pulse period/pulse width measuring mode : The timer measures pulse period or pulse width of an external signal.

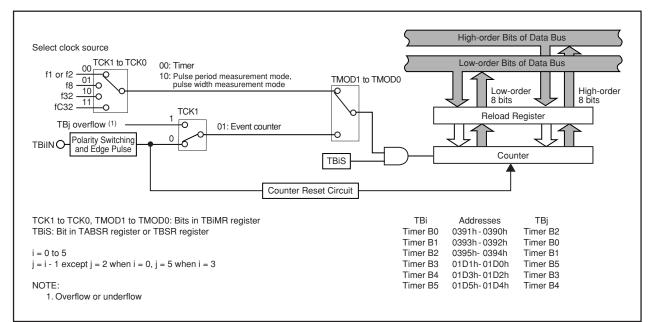
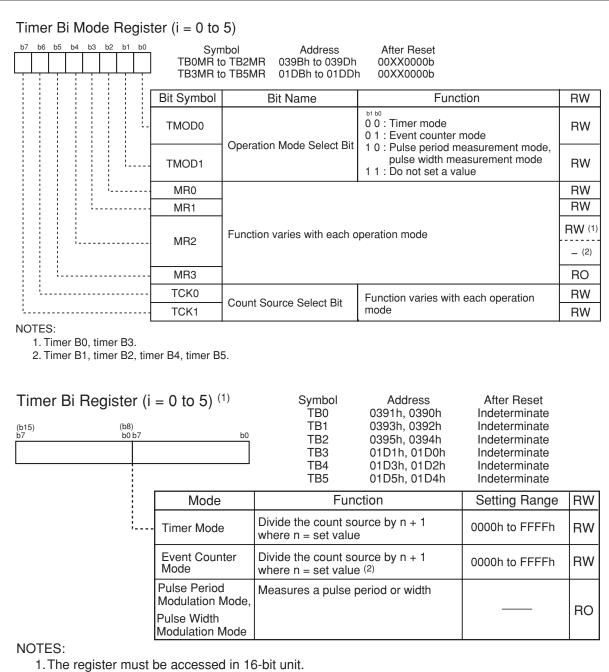
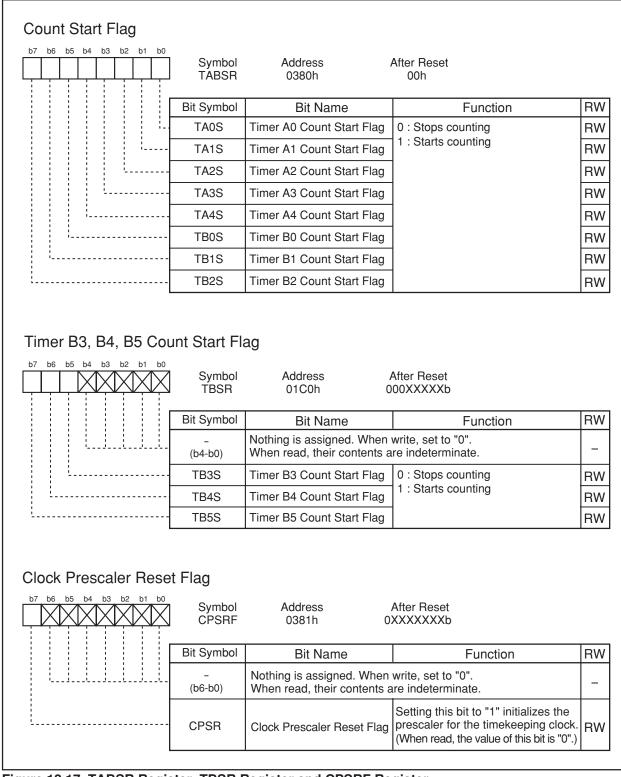



Figure 12.15 Timer B Block Diagram



2. The timer counts pulses from an external device or overflows or underflows of other timers.

Figure 12.16 TB0MR to TB5MR Registers and TB0 to TB5 Registers

12.2.1 Timer Mode

In timer mode, the timer counts a count source generated internally. Table 12.6 lists specifications in timer mode. Figure 12.18 shows TBiMR register in timer mode.

ltem	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count
	• When the timer underflows, it reloads the reload register contents and
	continues counting
Divide Ratio	1/(n+1) n: set value of the TBi register 0000h to FFFFh
Count Start Condition	Set the TBiS bit ⁽¹⁾ to "1" (start counting)
Count Stop Condition	Set the TBiS bit to "0" (stop counting)
Interrupt Request Generation Timing	Timer underflow
TBiIN Pin Function	I/O port
Read from Timer	Count value can be read by reading the TBi register
Write to Timer	• When not counting and until the 1st count source is input after counting start
	Value written to the TBi register is written to both reload register and counter
	When counting (after 1st count source input)
	Value written to the TBi register is written to only reload register
	(Transferred to counter when reloaded next)

i = 0 to 5

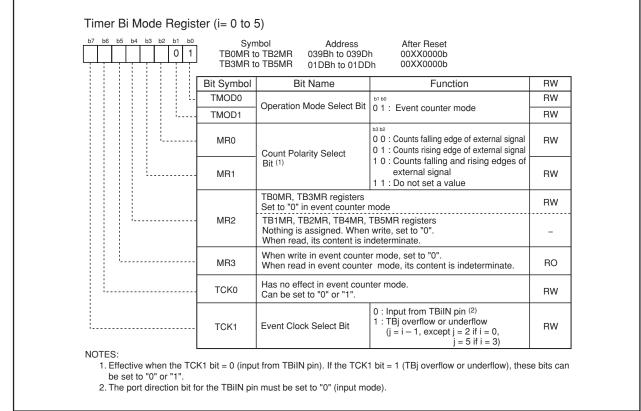
NOTE:

1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register, and the TB3S to TB5S bits are assigned to the bit 5 to bit 7 in the TBSR register.

b7 b6 b5 b	4 b3 b2 b1 b0 0 0	TB0MŔ t	nbol Address o TB2MR 039Bh to 039D o TB5MR 01DBh to 01DI			
		Bit Symbol	Bit Name	Function	RW	
		TMOD0	Operation Mode Select Bit	0 0 : Timer mode	RW	
		TMOD1	Operation Mode Select Dit		RW	
		MR0	Has no effect in timer mode)	RW	
	·	MR1	Can be set to "0" or "1"		RW	
		MR2	TB0MR, TB3MR registers Set to "0" in timer mode TB1MR, TB2MR, TB4MR,		RW	
				assigned. When write, set to "0". , its content is indeterminate.		
		MR3	When write in timer mode, When read in timer mode,	set to "0". ts content is indeterminate.	RO	
		TCK0	Count Source Select Bit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW	
		TCK1		1 0 : f32 1 1 : fC32	RW	

12.2.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Table 12.7 lists specifications in event counter mode. Figure 12.19 shows TBiMR register in event counter mode.


Item	Specification
Count Source	• External signals input to TBiIN pin (effective edge can be selected in program)
	Timer Bj overflow or underflow
Count Operation	Down-count
	• When the timer underflows, it reloads the reload register contents and
	continues counting
Divide Ratio	1/(n+1) n: set value of the TBi register 0000h to FFFFh
Count Start Condition	Set TBiS bit ⁽¹⁾ to "1" (start counting)
Count Stop Condition	Set TBiS bit to "0" (stop counting)
Interrupt Request Generation Timing	Timer underflow
TBiIN Pin Function	Count source input
Read from Timer	Count value can be read by reading the TBi register
Write to Timer	 When not counting and until the 1st count source is input after counting start
	Value written to the TBi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TBi register is written to only reload register
	(Transferred to counter when reloaded next)

i = 0 to 5

j = i - 1, except j = 2 if i = 0, j = 5 if i = 3

NOTE:

1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register, and the TB3S to TB5S bits are assigned to the bit 5 to bit 7 in the TBSR register.

12.2.3 Pulse Period and Pulse Width Measurement Mode

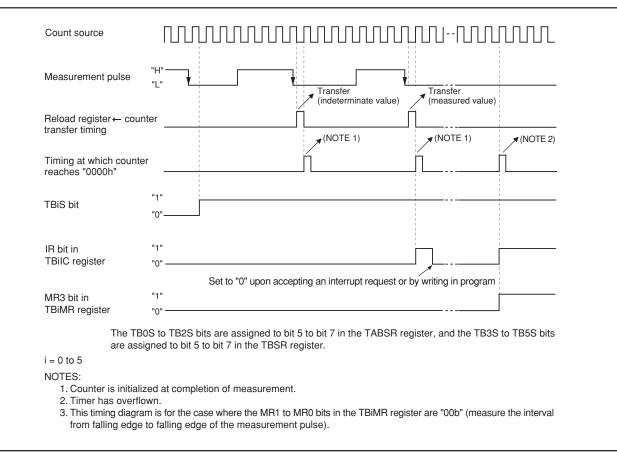
In pulse period and pulse width measurement mode, the timer measures pulse period or pulse width of an external signal. Table 12.8 lists specifications in pulse period and pulse width measurement mode. Figure 12.20 shows TBiMR register in pulse period and pulse width measurement mode. Figure 12.21 shows the operation timing when measuring a pulse period. Figure 12.22 shows the operation timing when measuring a pulse period.

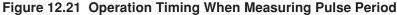
Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	• Up-count
	Counter value is transferred to reload register at an effective edge of
	measurement pulse. The counter value is set to "0000h" to continue counting.
Count Start Condition	Set the TBiS bit ⁽¹⁾ to "1" (start counting)
Count Stop Condition	Set the TBiS bit to "0" (stop counting)
Interrupt Request Generation Timing	When an effective edge of measurement pulse is input ⁽²⁾
	• Timer overflow. When an overflow occurs, the MR3 bit in the TBiMR
	register is set to "1" (overflow) simultaneously. The MR3 bit is set to "0"
	(no overflow) by writing to the TBiMR register at the next count timing or
	later after the MR3 bit was set to "1". At this time, make sure the TBiS bit
	is set to "1" (start counting).
TBiIN Pin Function	Measurement pulse input
Read from Timer	Contents of the reload register (measurement result) can be read by reading
	TBi register ⁽³⁾
Write to Timer	Value written to the TBi register is written to neither reload register nor counter

Table 12.8	Specifications	in Pulse	Period and	Pulse	Width	Measurement Mod	e
------------	----------------	----------	------------	-------	-------	-----------------	---

i = 0 to 5

NOTES:


- 1.The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register, and the TB3S to TB5S bits are assigned to the bit 5 to bit 7 in the TBSR register.
- 2. Interrupt request is not generated when the first effective edge is input after the timer started counting.
- 3. Value read from the TBi register is indeterminate until the second valid edge is input after the timer starts counting.



Bit Symbol Bit Name Function TMOD0 Operation Mode 1 0 : Pulse period / pulse width measurement mode TMOD1 Select Bit 1 0 : Pulse period / pulse width measurement mode MR0 MR0 Measurement Mode Select Bit 0 0 : Pulse period measurement (Measurement between a falling edge and the next falling edge of measured pulse) MR1 MR1 MR1 MR1 1 0 : Pulse period measurement (Measurement between a falling edge and the next rising edge of measured pulse) MR1 MR1 1 0 : Pulse period measurement (Measurement between a falling edge and the next rising edge of measured pulse) 1 0 : Pulse width measurement (Measurement between a falling edge and the next rising edge of measured pulse) 1 0 : Pulse width measurement (Measurement between a falling edge and the next rising edge of measured pulse) 1 1 : Do not set a value 1 1 : Do not set a value	RV RV RV
MR0 Operation Mode Select Bit 1 0 : Pulse period / pulse width measurement mode MR0 MR0 Measurement Mode Select Bit 1 0 : Pulse period measurement (Measurement between a falling edge and the next falling edge of measured pulse) MR1 MR1 MR1 MR1 MR1	RV
TMOD1 Select Bit To Trimeasurement mode MR0 MR0 Measurement Mode 0 : Pulse period measurement (Measurement between a falling edge and the next falling edge of measured pulse) MR1 MR1 MR1 MR1 MR1	
MR0 MR0 0 0 : Pulse period measurement (Measurement between a falling edge and the next falling edge of measured pulse) MR1 MR1 0 0 : Pulse period measurement (Measurement between a rising edge and the next rising edge of measured pulse) MR1 MR1 0 : Pulse period measurement (Measurement between a rising edge and the next rising edge of measured pulse) MR1 NR1 1 : Pulse period measurement (Measurement between a rising edge and the next rising edge of measured pulse) 1 : Pulse width measurement (Measurement between a falling edge and the next rising edge and the next falling edge) 1 : Pulse width measurement (Measurement between a falling edge and the next rising edge and the next falling edge) 1 : Do not set a value 1 : Do not set a value	RV
MR1 MR1 1 0 : Pulse width measurement (Measurement between a falling edge and the next rising edge of measured pulse and between a rising edge and the next falling edge) 1 1 : Do not set a value	1
	RV
TB0MR and TB3MR registers Set to "0" in pulse period and pulse width measurement mode	RV
MR2 TB1MR, TB2MR, TB4MR, TB5MR registers Nothing is assigned. When write, set to "0". When read, its content turns out to be indeterminate.	-
MR3 Timer Bi Overflow 0 : Timer did not overflow 1 : Timer has overflown	R
TCK0 Count Source 0 0 : f1 or f2	RV
ТСК1 Select Bit 10: f32 11: fC32	RV

Figure 12.20 TB0MR to TB5MR Registers in Pulse Period and Pulse Width Measurement Mode

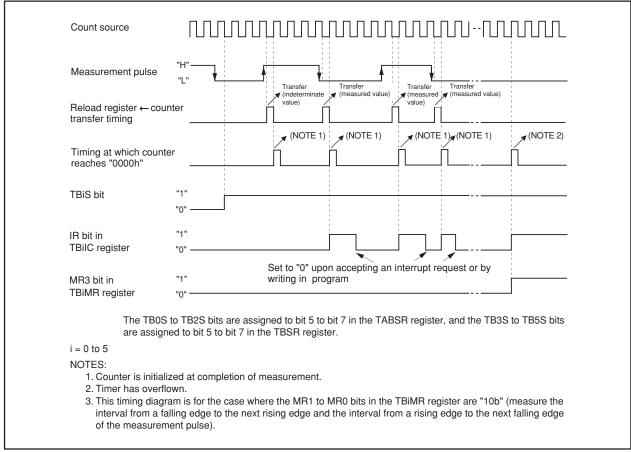


Figure 12.22 Operation Timing When Measuring Pulse Width

13. Three-Phase Motor Control Timer Function

Timers A1, A2, A4 and B2 can be used to output three-phase motor drive waveforms. Table 13.1 lists the specifications of the three-phase motor control timer function. Figure 13.1 shows the block diagram for three-phase motor control timer function. Also, the related registers are shown on Figures 13.2 to 13.8.

Item	Specification
Three-Phase Waveform Output Pin	Six pins (U, \overline{U} , V, \overline{V} , W, \overline{W})
Forced Cutoff Input (1)	Input "L" to NMI pin
Used Timers	Timer A4, A1, A2 (used in the one-shot timer mode)
	 Timer A4: U- and U-phase waveform control
	 Timer A1: V- and V-phase waveform control
	 Timer A2: W- and W-phase waveform control
	Timer B2 (used in the timer mode)
	Carrier wave cycle control
	Dead time timer (3 eight-bit timer and shared reload register)
	Dead time control
Output Waveform	Triangular wave modulation, Sawtooth wave modification
	 Enable to output "H" or "L" for one cycle
	• Enable to set positive-phase level and negative-phase level respectively
Carrier Wave Cycle	Triangular wave modulation: count source \times (m+1) \times 2
	Sawtooth wave modulation: count source \times (m+1)
	m: Setting value of the TB2 register, 0 to 65535
	Count source: f1, f2, f8, f32, fC32
Three-Phase PWM Output Width	Triangular wave modulation: count source \times n \times 2
	Sawtooth wave modulation: count source \times n
	n: Setting value of the TA4, TA1 and TA2 registers (of the TA4,
	TA41, TA1, TA11, TA2 and TA21 registers when setting the
	INV11 bit to "1"), 1 to 65535
	Count source: f1, f2, f8, f32, fC32
Dead Time	Count source \times p, or no dead time
	p: Setting value of the DTT register, 1 to 255
	Count source: f1, f2, f1 divided by 2, f2 divided by 2
Active Level	Enable to select "H" or "L"
Positive and Negative-Phase Concurrent	
Active Disable Function	Positive and negative-phases concurrent active detect function
Interrupt Frequency	For Timer B2 interrupt, select a carrier wave cycle-to-cycle basis
	through 15 times carrier wave cycle-to-cycle basis

Table 13.1 Three-Phase Motor Control Timer Function Specifications

NOTE:

1. Forced cutoff with $\overline{\text{NMI}}$ input is effective when the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by $\overline{\text{NMI}}$ input enabled). If an "L" signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit is "1", the related pins go to a high-impedance state regardless of which functions of those pins are being used.

Related pins: • P7_2/CLK2/TA1OUT/V

- P7_3/CTS2/RTS2/TA1IN/V
- P7_4/TA2OUT/W/(CLK4)
- P7_5/TA2IN/W/(SOUT4)
- P8_0/TA4OUT/U(SIN4)
- P8_1/TA4IN/U

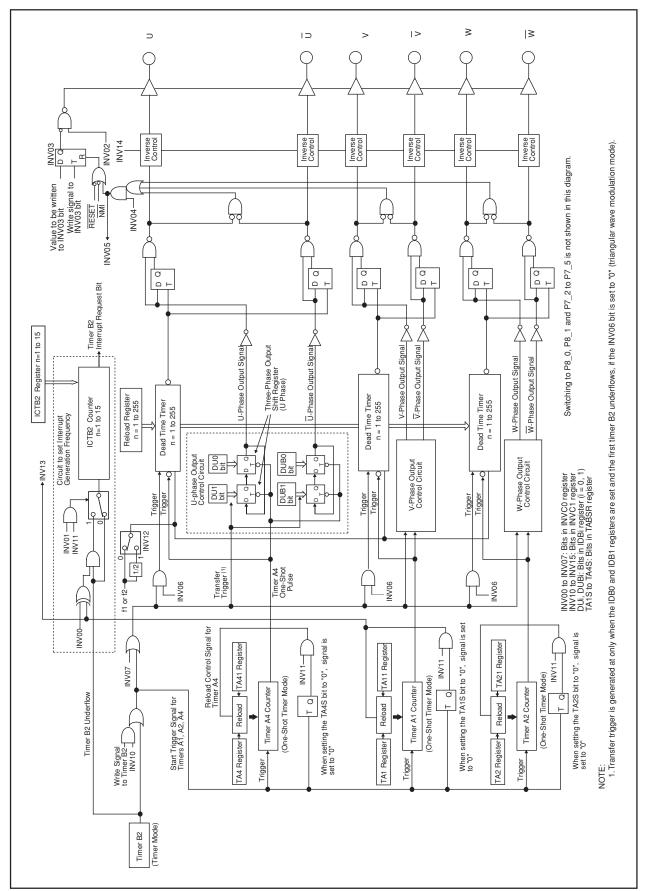


Figure 13.1 Three-Phase Motor Control Timer Function Block Diagram

b6 b5	b4 b3 b2 b1 b0		hbol Address /C0 01C8h	After Reset 00h	
		Bit Symbol	Bit Name	Function	RW
		INV00	Interrupt Enable Output Polarity Select Bit	0: The ICTB2 counter is incremented by one on the rising edge of the timer A1 reload control signal 1: The ICTB2 counter is incremented by one on the falling edge of the timer A1 reload control signal ⁽²⁾	RW
		INV01	Interrupt Enable Output Specification Bit ⁽³⁾	0: ICTB2 counter is incremented by one when timer B2 underflows 1: Selected by the INV00 bit ⁽²⁾	RW
		INV02	Mode Select Bit ⁽⁴⁾	0: No three-phase control timer functions 1: Three-phase control timer function ⁽⁵⁾	RW
		INV03	Output Control Bit	0: Disables three-phase control timer output (5) 1: Enables three-phase control timer output (6)	RW
		INV04	Positive and Negative- Phases Concurrent Active Disable Function Enable Bit	0: Enables concurrent active output 1: Disables concurrent active output	RW
		INV05	Positive and Negative- Phases Concurrent Active Output Detect Flag	0: Not detected 1: Detected (7)	RW
		INV06	Modulation Mode Select ⁽⁸⁾	0: Triangular wave modulation mode 1: Sawtooth wave modulation mode ⁽⁹⁾	RW
		INV07	Software Trigger Select Bit	Transfer trigger is generated when the INV07 bit is set to "1". Trigger to the dead time timer is also generated when setting the INV06 bit to "1". Its value is "0" when read.	RW

NOTES:

1. Set the INVC0 register after the PRC1 bit in the PRCR register is set to "1" (write enable).

Rewrite the INV00 to INV02 and INV06 bits when the timers A1, A2, A4 and B2 stop.

2. The INV00 and INV01 bits are enabled only when the INV11 bit is set to "1" (three-phase mode 1). The ICTB2 counter is incremented by one every time the timer B2 underflows, regardless of INV00 and INV01 bit settings, when the INV11 bit is set to "0" (three-phase mode 0).

When setting the INV01 bit to "1", set the timer A1 count start flag before the first timer B2 underflow.

- When the INV00 bit is set to "1", the first interrupt is generated when the timer B2 underflows *n*-1 times, if *n* is the value set in the ICTB2 counter. Subsequent interrupts are generated every *n* times the timer B2 underflows. 3. Set the INV01 bit to "1" after setting the ICTB2 register.
- 4. Set the INV02 bit to "1" to operate the dead time timer, U-, V-and W-phase output control circuits and ICTB2 counter.
- 5. When the INV02 bit is set to "1" (three-phase control timer functions) and the INV03 bit to "0" (three-phase control timer output disabled), U, U, V, V, W and W pins, including pins shared with other output functions, enter a high-impedance state.
- 6. The INV03 bit is set to "0" when the followings occurs :
 - Reset
 - A concurrent active state occurs while INV04 bit is set to "1"
 - The INV03 bit is set to "0" by program

- A signal applied to the MII pin changes "H" to "L"

- 7. The INV05 bit cannot be set to "1" by program. Set the INV04 bit to "0", as well, when setting the INV05 bit to "0".
- 8. The following table describes how the INV06 bit works.

Item	INV06 = 0	INV06 = 1
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode
and IDB1 Registers to Three-	Transferred once by generating a transfer trigger after setting the IDB0 and IDB1 registers	Transferred every time a transfer trigger is generated
Timing to Trigger the Dead Time Timer when the INV16 Bit=0	On the falling edge of a one-shot pulse of the timer A1, A2 or A4	By a transfer trigger, or the falling edge of a one-shot pulse of the timer A1, A2 or A4
INV13 Bit	Enabled when the INV11 bit=1 and the INV06 bit=0	Disabled

Transfer trigger : Timer B2 underflows and write to the INV07 bit, or write to the TB2 register when INV10 = 1

9. When the INV06 bit is set to "1", set the INV11 bit to "0" (three-phase mode 0) and the PWCON bit in the TB2SC register to "0" (reload timer B2 with timer B2 underflow).

Figure 13.2 INVC0 Register

17 b6 b5 b4 b3 b2 b1 b0 0 1	Syml INV(After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	INV10	Timer A1, A2 and A4 Start Trigger Select Bit	0: Timer B2 underflow 1: Timer B2 underflow and write to the timer B2	RW
	INV11	Timer A1-1, A2-1, A4-1 Control Bit ⁽²⁾	0: Three-phase mode 0 ⁽³⁾ 1: Three-phase mode 1	RW
	INV12	Dead Time Timer Count Source Select Bit	0 : f1 or f2 1 : f1 divided-by-2 or f2 divided-by-2	RW
	INV13	Carrier Wave Detect Flag ⁽⁴⁾	0: Timer A1 reload control signal is "0" 1: Timer A1 reload control signal is "1"	RO
	INV14	Output Polarity Control Bit	0 : Active "L" of an output waveform 1 : Active "H" of an output waveform	RW
	INV15	Dead Time Disable Bit	0: Enables dead time 1: Disables dead time	RW
	INV16	Dead Time Timer Trigger Select Bit	 0: Falling edge of a one-shot pulse of the timer A1, A2, A4 ⁽⁵⁾ 1: Rising edge of the three-phase output shift register (U-, V-, W-phase) 	
	- (b7)	Reserved Bit	Set to "0"	RW

NOTES:

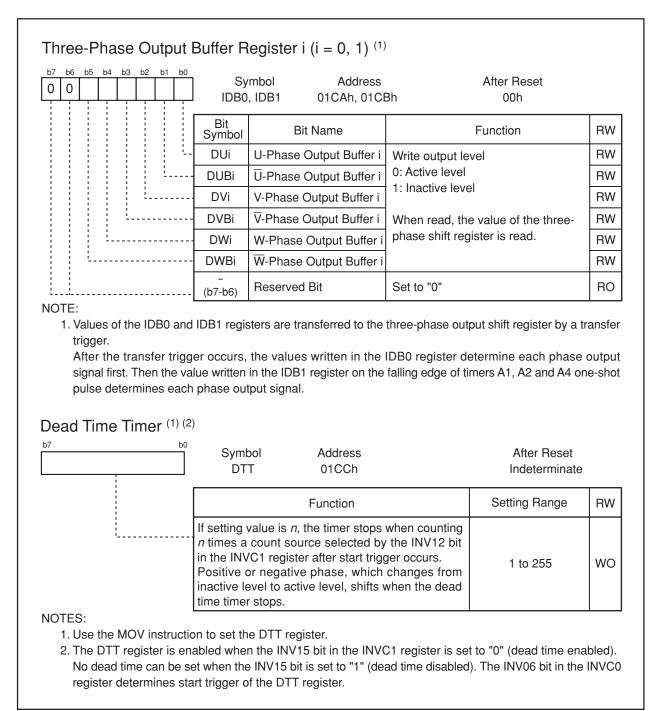
1. Rewrite the INVC1 register after the PRC1 bit in the PRCR register is set to "1" (write enable).

The timers A1, A2, A4, and B2 must be stopped during rewrite.

2. The following table lists how the INV11 bit works.

ltem	INV11 = 0	INV11 = 1
Mode	Three-phase mode 0	Three-phase mode 1
TA11, TA21 and TA41 Registers	Not used	Used
INV00 and INV01 Bit	Disabled. The ICTB2 counter is incremented whenever the timer B2 underflows	Enabled
INV13 Bit	Disabled	Enabled when INV11=1 and INV06=0

3. When the INV06 bit is set to "1" (sawtooth wave modulation mode), set the INV11 bit to "0" (three-phase mode 0). Also, when the INV11 bit is set to "0", set the PWCON bit in the TB2SC register to "0" (timer B2 is reloaded when the timer B2 underflows).

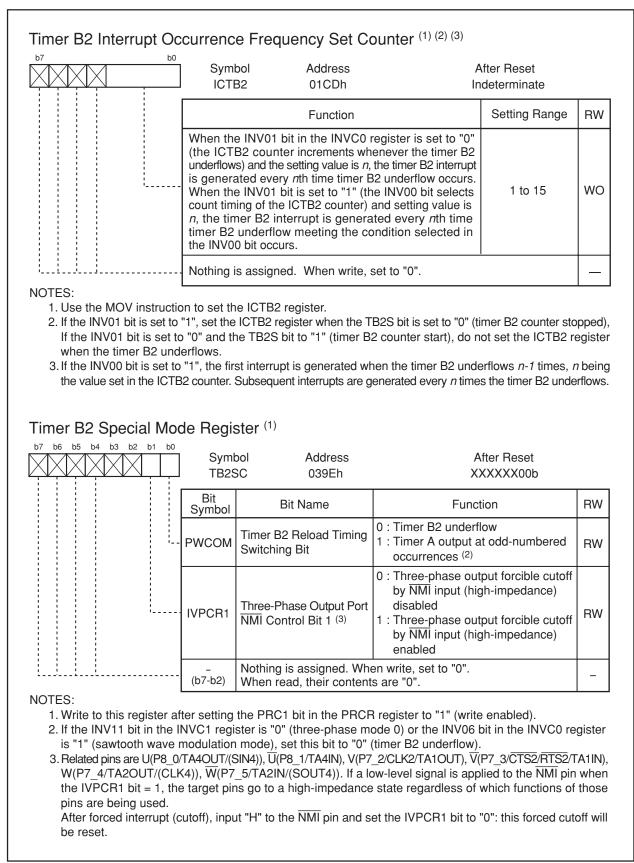

4. The INV13 bit is enabled only when the INV06 bit is set to "0" (Triangular wave modulation mode) and the INV11 bit to "1" (three-phase mode 1).

5. If the following conditions are all met, set the INV16 bit to "1" (rising edge of the three-phase output shift register).

• The INV15 bit is set to "0" (dead time timer enabled)

• The Dij bit (i=U, V or W, j=0, 1) and DiBj bit always have different values when the INV03 bit is set to "1". (The positive-phase and negative-phase always output opposite level signals.) If above conditions are not met, set the INV16 bit to "0" (falling edge of a one-shot pulse of the timer A1, A2, A4).

Figure 13.3 INVC1 Register


Figure 13.4 IDB0 and IDB1 Registers and DTT Register

b15 b8 b7	b0 Symbol TA1, TA2, TA4 TA11, TA21, TA41 (7)	Address 0389h - 0388h, 038Bh - 03 01C3h - 01C2h, 01C5h - 0	88Ah, 038Fh		minat
		Function		Setting Range	RW
	source is counted a Positive phase cha	, the timer stops when the nt after a start trigger is generate anges to negative phase, an mers A1, A2 and A4 stop.	ed.	0000h to FFFFh	WC
NOTES: 1. Use a 16-bit data		·	I		1
4. When the INV15	truction to set the TAi an bit in the INVC1 register	er is set to "0" (dead timer dead time timer stops.	enabled),	phase switches f	rom a
 When the INV11 is transferred to t When the INV11 the reload registe trigger. The values timer Ai start trigg Do not write to th Follow the proces (a) Write value to (b) Wait one time (c) Write the same 	bit in the INVC1 register he reload register by a tin bit is set to "1" (three-pha or by a timer Ai start trigge s of the TAi1 and TAi regis ger. ese registers when the tin dure below to set the TAi or the TAi1 register, er Ai count source cycle, he value as (a) to the TAi	is set to "0" (three-phase m mer Ai start trigger. ase mode 1), the value of th er. Then, the value of the T sters are transferred alterna imer B2 underflows. 11 register. and	ne TAi1 reg Ai register	ister is first transfe is transferred by t	erred to he ne
 When the INV11 is transferred to t When the INV11 the reload registe trigger. The values timer Ai start trigg Do not write to th Follow the proceed (a) Write value to (b) Wait one time 	bit in the INVC1 register he reload register by a tin bit is set to "1" (three-pha or by a timer Ai start trigge s of the TAi1 and TAi regis ger. ese registers when the tin dure below to set the TAi or the TAi1 register, er Ai count source cycle, he value as (a) to the TAi	is set to "0" (three-phase m mer Ai start trigger. ase mode 1), the value of th er. Then, the value of the T sters are transferred alterna imer B2 underflows. 11 register. and	ne TAi1 reg Ai register	ister is first transfe is transferred by t	erred to he ne
 When the INV11 is transferred to t When the INV11 the reload registe trigger. The values timer Ai start trigg Do not write to th Follow the proces (a) Write value to (b) Wait one time (c) Write the same 	bit in the INVC1 register he reload register by a tin bit is set to "1" (three-pha or by a timer Ai start trigge s of the TAi1 and TAi regis ger. ese registers when the tin dure below to set the TAi or the TAi1 register, er Ai count source cycle, he value as (a) to the TAi	is set to "0" (three-phase m mer Ai start trigger. ase mode 1), the value of th er. Then, the value of the T sters are transferred alterna imer B2 underflows. 11 register. and	he TAi1 reg Ai register ately to the	ister is first transfe is transferred by t	erred to he ne
 When the INV11 is transferred to t When the INV11 the reload registe trigger. The values timer Ai start trigg Do not write to th Follow the proced (a) Write value to (b) Wait one time (c) Write the sam Timer B2 Registe 	bit in the INVC1 register he reload register by a tin bit is set to "1" (three-pha or by a timer Ai start trigge s of the TAi1 and TAi register ese registers when the ti dure below to set the TAi or the TAi1 register, er Ai count source cycle, he value as (a) to the TAi	is set to "0" (three-phase m mer Ai start trigger. ase mode 1), the value of th er. Then, the value of the T. sters are transferred alternation imer B2 underflows. 11 register. and 11 register. Address	he TAi1 reg Ai register ately to the	ister is first transfe is transferred by t reload register wit er Reset	erred to he ne

Figure 13.5 TA1, TA2, TA4, TA11, TA21 and TA41 Registers, and TB2 Register

b6 b5 b4 b3 b2 b1 b0	Sym TRG		After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	TA1TGL TA1TGH	Timer A1 Event/Trigger Select Bit	Set to "01b" (TB2 underflow) before using a V-phase output control circuit	RW RW
· · · · · · · · · · · · · · · · · · ·	TA2TGL	Timer A2 Event/Trigger Select Bit	Set to "01b" (TB2 underflow) before using a W-phase output control circuit	RW
	TA2TGH		b5 b4	RW RW
		Timer A3 Event/Trigger Select Bit	0 0: Selects an input to the TA3IN pin ⁽¹⁾ 0 1: Selects TB2 ⁽²⁾ 1 0: Selects TA2 ⁽²⁾	
	TA3TGH	Timer A4 Event/Trigger	1 1: Selects TA4 ⁽²⁾ Set to "01b" (TB2 underflow) before	RW
				<u> </u>
TES: 1. Set the corresponding 2. Overflow or underflow.	TA4TGH	Select Bit	using a U-phase output control circuit	RW
1. Set the corresponding		ion bit to "0" (input mode). Ibol Address		RW
1. Set the corresponding 2. Overflow or underflow.	port direct	ion bit to "0" (input mode). Ibol Address	After Reset	
1. Set the corresponding 2. Overflow or underflow. ount Start Flag	port direct Sym TAB:	ion bit to "0" (input mode). Ibol Address SR 0380h	After Reset 00h Function	RW
1. Set the corresponding 2. Overflow or underflow.	port direct Sym TABS Bit Symbol	ion bit to "0" (input mode). Ibol Address SR 0380h Bit Name	After Reset 00h Function	RW
1. Set the corresponding 2. Overflow or underflow.	Sym TABS Bit Symbol TAOS	ion bit to "0" (input mode). bol Address SR 0380h Bit Name Timer A0 Count Start Flag	After Reset 00h Function 0 : Stops counting	RW
1. Set the corresponding 2. Overflow or underflow.	Sym TABS Bit Symbol TA0S TA1S	ion bit to "0" (input mode). bol Address SR 0380h Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag	After Reset 00h Function 0 : Stops counting	RW RW
1. Set the corresponding 2. Overflow or underflow.	Sym TABS Bit Symbol TA0S TA1S TA2S	ion bit to "0" (input mode). bol Address SR 0380h Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag	After Reset 00h Function 0 : Stops counting	RW RW RW
1. Set the corresponding 2. Overflow or underflow.	Sym TABS Bit Symbol TA0S TA1S TA2S TA3S	ion bit to "0" (input mode). bol Address SR 0380h Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag Timer A3 Count Start Flag	After Reset 00h Function 0 : Stops counting	RW RW RW RW
1. Set the corresponding 2. Overflow or underflow.	Sym TABS Bit Symbol TA0S TA1S TA2S TA2S TA3S TA4S	ion bit to "0" (input mode). bol Address SR 0380h Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag Timer A3 Count Start Flag Timer A4 Count Start Flag	After Reset 00h Function 0 : Stops counting	RW RW RW RW

Figure 13.7 TRGSR Register and TRBSR Register

b6 b5 b4 b3 b2 b1 b0		Symbol	Address After Deset	
	TA1	Symbol MR, TA2MR, TA4MR	Address After Reset 0397h, 0398h, 039Ah 00h	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operation Mode Select Bit	Set to "10b" (one-shot timer mode) with the three-phase motor control	RW
	TMOD1		timer function	RW
	MR0	Pulse Output Function Select Bit	Set to "0" with the three-phase motor control timer function	RW
	MR1	External Trigger Select Bit	Set to "0" with the three-phase motor control timer function	RW
	MR2	Trigger Select Bit	Set to "1" (selected by the TRGSR register) with the three-phase motor control timer function	RW
	MR3	Set to "0" with the three-p	phase motor control timer function	RW
	ТСК0	Count Course Colort Dit	^{b7 b6} 0 0 : f1 or f2 0 1 : f8	RW
		Count Source Select Bit	0 1 : f8 1 0 : f32	
mer B2 Mode Regis	TCK1		1 0 : f32 1 1 : fC32	RV
mer B2 Mode Regis				RW
b6 b5 b4 b3 b2 b1 b0	ter Symt		1 1 : fC32 After Reset	
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N	/IR 039Dh Bit Name	1 1 : fC32 After Reset 00XX0000b Function Set to "00b" (timer mode) when using	RW
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N Bit Symbol	/IR 039Dh	1 1 : fC32 After Reset 00XX0000b Function Set to "00b" (timer mode) when using the three-phase motor control timer	RW
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N Bit Symbol TMOD0	IR 039Dh Bit Name Operation Mode Select Bit Disabled when using the tl	1 1 : fC32 After Reset 00XX0000b Function Set to "00b" (timer mode) when using	RW RW RW
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N Bit Symbol TMOD0 TMOD1	IR 039Dh Bit Name Operation Mode Select Bit	After Reset 00XX0000b Function Set to "00b" (timer mode) when using the three-phase motor control timer function pree-phase motor control timer function.	RW RW RW
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N Bit Symbol TMOD0 TMOD1 MR0	AR 039Dh Bit Name Operation Mode Select Bit Disabled when using the th When write, set to "0". When read, its content is	After Reset 00XX0000b Function Set to "00b" (timer mode) when using the three-phase motor control timer function pree-phase motor control timer function.	RW RW RW RW
b6 b5 b4 b3 b2 b1 b0	ter Symt TB2N Bit Symbol TMOD0 TMOD1 MR0 MR1	AR 039Dh Bit Name Operation Mode Select Bit Disabled when using the th When write, set to "0". When read, its content is Set to "0" when using thr When write in three-phase	After Reset 00XX0000b Function Set to "00b" (timer mode) when using the three-phase motor control timer function nree-phase motor control timer function. indeterminate. ee-phase motor control timer function motor control timer function, set to "0". e motor control timer function,	RW RW RW RW RW
b6 b5 b4 b3 b2 b1 b0	ter Symbol TMOD0 TMOD1 MR0 MR1 MR2	AR 039Dh Bit Name Operation Mode Select Bit Disabled when using the th When write, set to "0". When read, its content is Set to "0" when using thr When write in three-phase When read in three-phase	After Reset 00XX0000b Function Set to "00b" (timer mode) when using the three-phase motor control timer function nree-phase motor control timer function. indeterminate. ee-phase motor control timer function motor control timer function, set to "0". e motor control timer function,	RW RW RW RW RW RW

Figure 13.8 TA1MR, TA2MR and TA4MR Registers, and TB2MR Register

The three-phase motor control timer function is enabled by setting the INV02 bit in the INVC0 register to "1". When this function is selected, timer B2 is used to control the carrier wave, and timers A4, A1 and A2 are used to control three-phase PWM outputs (U, \overline{U} , V, \overline{V} , W and \overline{W}). The dead time is controlled by a dedicated dead-time timer. Figure 13.9 shows the example of triangular modulation waveform and Figure 13.10 shows the example of sawtooth modulation waveform.

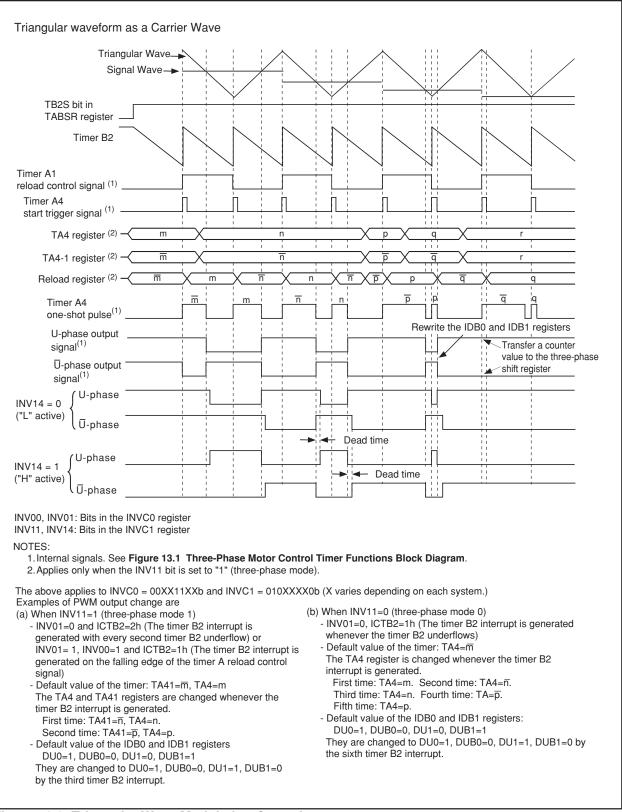


Figure 13.9 Triangular Wave Modulation Operation

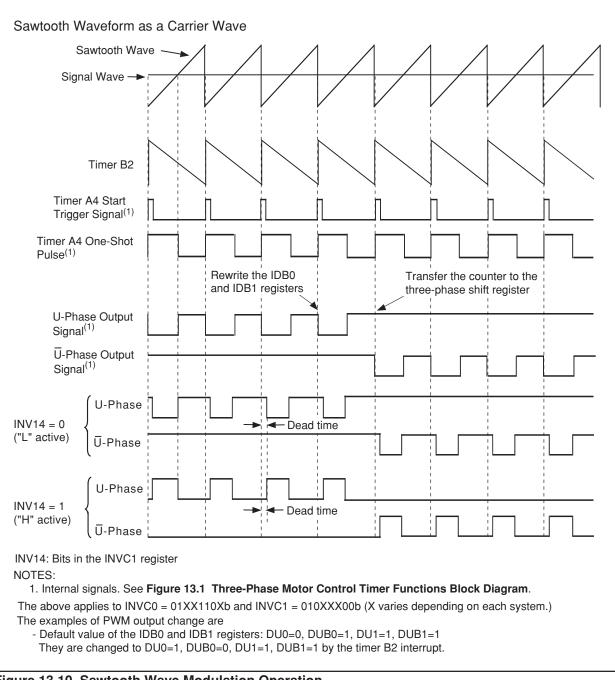


Figure 13.10 Sawtooth Wave Modulation Operation

14. Serial I/O

Serial I/O is configured with 7 channels: UART0 to UART2 and SI/O3 to SI/O6 ⁽¹⁾.

NOTE:

1.100-pin version supports 5 channels; UART0 to UART2, SI/O3, SI/O4 128-pin version supports 7 channels; UART0 to UART2, SI/O3 to SI/O6

14.1 UARTi (i = 0 to 2)

UARTi each have an exclusive timer to generate a transfer clock, so they operate independently of each other. Figures 14.1 to 14.3 show the block diagram of UARTi. Figure 14.4 shows the block diagram of the UARTi transmit/receive.

UARTi has the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode).
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Bus collision detection function, IE mode)
- Special mode 4 (SIM mode) : UART2

Figures 14.5 to 14.10 show the UARTi-related registers. Refer to tables listing each mode for register setting.

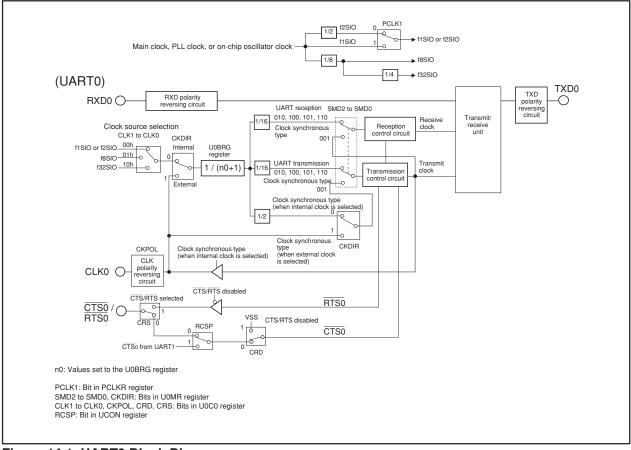


Figure 14.1 UART0 Block Diagram

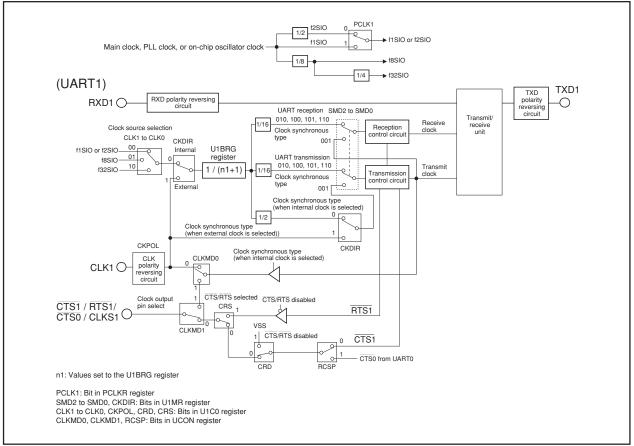


Figure 14.2 UART1 Block Diagram

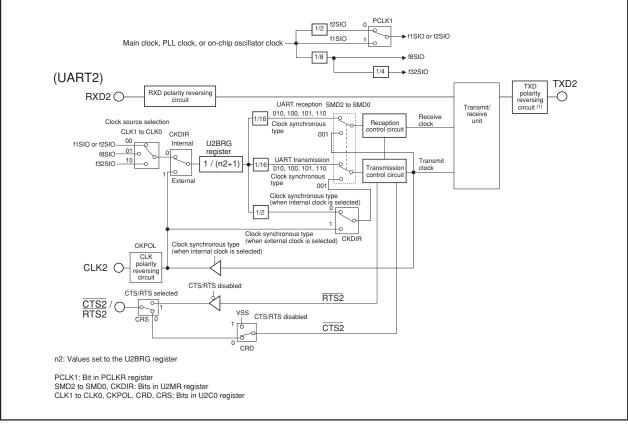
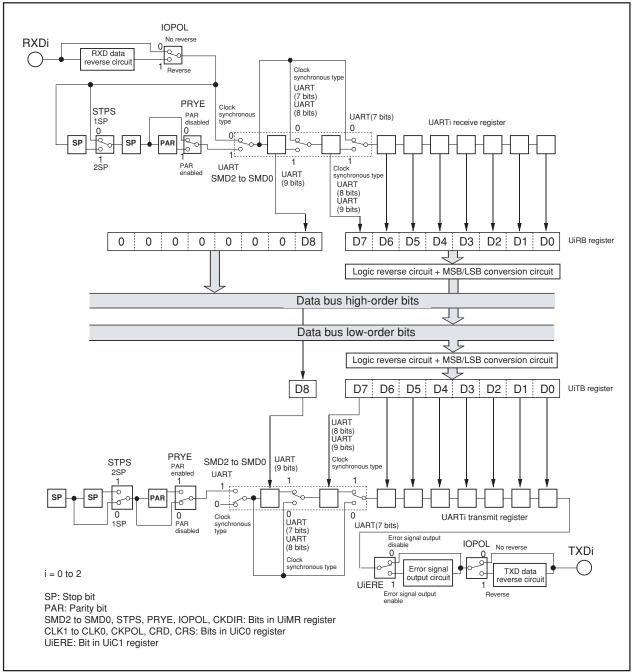



Figure 14.3 UART2 Block Diagram

015) 07	Ti Transmit Buffe	-	I	Symbol U0TB U1TB	Address 03A3h to 03A2 03ABh to 03AA	h Indeterminate	
`			Bit	U2TB	01FBh to 01FA	h Indeterminate	1
			Symbol		Function		RW
		j-	 (b8-b0)	Transmit data			WC
			_ (b15-b9)	Nothing is assigned W When read, their conte			-
NOTE:			, ,	When read, their cont			
1. L	Jse the MOV instruction	on to write to thi	s register.				
UAR	Ti Receive Buffe	r Register (i	i = 0 to 2				
b15) b7	(b8) b0	b7	1	Symbol	Address 03A7h to 03A6	After Reset	
				U1RB	03AFh to 03AE	h Indeterminate	
			Bit	U2RB	01FFh to 01FE		
			Symbol	Bit Name		Function	R\
		i.	(b7-b0)	-	Receive data (D	7 to D0)	R
			(b8)	-	Receive data (D	8)	R
			- (- 10 - 0)	Nothing is assigned V		"0".	1_
			(b10-b9)	When read, their conto Arbitration Lost	ents are "0". 0 : Not detected		+
			ABT	Detecting Flag (1)	1 : Detected		R
			- OER	Overrun Error Flag (2)	0 : No overrun e 1 : Overrun erro		R
			FER	Framing Error Flag ⁽²⁾	0 : No framing e	rror	R
					1 : Framing erro		+
-			PER	Parity Error Flag ⁽²⁾	1 : Parity error f		R
			- SUM	Error Sum Flag (2)	0 : No error 1 : Error found		R
NOTES				I			
				m. (Writing "1" has no		RE bit in the UiC1 regis	tor -
						SUM bit is set to "0" (no	
	when all of the PER, F			no error). ding the lower byte of th	o LliPP register		
-			U Dy lead		le ond register.		
	Ti Bit Rate Gene	rator Regist	ter (i – 0	to 2) (1) (2)			
b7				Symbol	Address	After Reset	
D7	00			U0BRG	03A1h	Indeterminate Indeterminate	
				U1BRG U2BRG	03A9h 01F9h	Indeterminate	
			Bit Symbol	Functio	n	Setting Range	R\
			 (b7-b0)	Assuming that set valu divides the count sour		00h to FFh	W
			(0, 00)	Lawaes the count sour	Ce Dy II + I		

Figure 14.5 U0TB to U2TB Registers, U0RB to U2RB Registers, and U0BRG to U2BRG Registers

UARTi Transmit/Receive Mode Register (i = 0 to 2)

									0 (,	
b7	b6	b5	b4	b3		b2 b1	b0		ymbol R to U2MR 034	Address After Res A0h, 03A8h, 01F8h 00h	et
	1							Bit Symbol	Bit Name	Function	RW
								SMD0		0 0 0 : Serial I/O disabled 0 0 1 : Clock synchronous serial I/O n	node RW
							SMD1	Serial I/O Mode Select Bit ⁽¹⁾	Mode 0 1 0 : I ² C mode (2)		
							SMD2		1 1 0 : UART mode transfer data 9-bit Do not set a value except above		
				ļ				CKDIR	Internal/External Clock Select Bit	0 : Internal clock 1 : External clock ⁽³⁾	RW
								STPS	Stop Bit Length Select Bit	0 : 1 stop bit 1 : 2 stop bits	RW
								PRY	Odd/Even Parity Select Bit	Effective when the PRYE bit = 1 0 : Odd parity 1 : Even parity	RW
	i.							PRYE	Parity Enable Bit	0 : Parity disabled 1 : Parity enabled	RW
<u>-</u>								IOPOL	TXD, RXD I/O Polarity Reverse Bit	0 : No reverse 1 : Reverse	RW

NOTES:

1. To receive data, set the corresponding port direction bit for each RXDi pin to "0" (input mode).

2. Set the corresponding port direction bit for SCL and SDA pins to "0" (input mode).

3. Set the corresponding port direction bit for each CLKi pin to "0" (input mode).

UARTi Transmit/Receive Control Register 0 (i = 0 to 2)

b7 b6 b5 b4 b3 b2 b1 b0		Symbol 0 to U2C0 03A	Address After F 4h, 03ACh, 01FCh 00001	
	Bit Symbol	Bit Name	Function	RW
	CLK0	BRG Count Source	0 0 : f1SIO or f2SIO is selected 0 1 : f8SIO is selected	RW
	CLK1	Select Bit	1 0 : f32SIO is selected 1 1 : Do not set a value	RW
	CRS	CTS/RTS Function Select Bit ⁽¹⁾	Effective when CRD = 0 0 : CTS function is selected ⁽²⁾ 1 : RTS function is selected	RW
	TXEPT	Transmit Register Empty Flag	 0 : Data present in transmit regis (during transmission) 1 : No data present in transmit re (transmission completed) 	
	CRD	CTS/RTS Disable Bit	0 : <u>CTS/RTS</u> function enabled 1 : <u>CTS/RTS</u> function disabled (P6_0, P6_4, P7_3 can be used as	/O ports) RW
	NCH	Data Output Select Bit ⁽³⁾	0 : TXDi/SDAi and SCLi pins are CMO 1 : TXDi/SDAi and SCLi pins are N channel open-drain output	
	CKPOL	CLK Polarity Select Bit	 0 : Transmit data is output at fallin of transfer clock and receive input at rising edge 1 : Transmit data is output at risin of transfer clock and receive input at falling edge 	data is Ig edge RW
NOTES:	UFORM	Transfer Format Select Bit ⁽⁴⁾	0 : LSB first 1 : MSB first	RW

NOTES:

- 1. CTS1/RTS1 can be used when the CLKMD1 bit in the UCON register = 0 (only CLK1 output) and the RCSP bit in the UCON register = 0 (CTS0/RTS0 not separated).
- 2. Set the corresponding port direction bit for each CTSi pin to "0" (input mode)
- 3. SCL2(P7_1) is N channel open-drain output. The NCH bit in the U2C0 register is N channel open-drain output regardless of the NCH bit.

4. The UFORM bit is enabled when the SMD2 to SMD0 bits in the UiMR register are set to "001b" (clock synchronous serial I/O mode), or "101b" (UART mode, 8-bit transfer data).

Set this bit to "1" when the SMD2 to SMD0 bits are set to "010b" (I²C mode), and to "0" when the SMD2 to SMD0 bits are set to "100b" (UART mode, 7-bit transfer data) or "110b" (UART mode, 9-bit transfer data).

Figure 14.6 U0MR to U2MR Registers and U0C0 to U2C0 Registers

UARTj Transmit/Receive Control Register 1 (j = 0, 1)

-		•			
b7 b6 b5 b4 b3 b2 b1 b0		Symbol C1, U1C1	Address 03A5h, 03ADh	After Reset 00XX0010b	
	Bit Symbol	Bit Name	Fund	ction	RW
	TE	Transmit Enable Bit	0 : Transmission dis 1 : Transmission en		RW
	TI	Transmit Buffer Empty Flag	0 : Data present in t 1 : No data present		RO
	RE	Receive Enable Bit	0 : Reception disab 1 : Reception enabl		RW
	- RI	Receive Complete Flag	0 : No data present 1 : Data present in t		RO
	(b5-b4)	Nothing is assigned. V When read, their conte			_
	UjLCH	Data Logic Select Bit ⁽¹⁾	0 : No reverse 1 : Reverse		RW
İ	UjERE	Error Signal Output Enable Bit	0 : Output disabled 1 : Output enabled		RW

NOTE:

1. The UjLCH bit is enabled when the SMD2 to SMD0 bits in the UjMR register are set to "001b" (clock synchronous serial I/O mode), "100b" (UART mode, 7-bit transfer data) or "101b" (UART mode, 8-bit transfer data).

Set this bit to "0" when the SMD2 to SMD0 bits are set to "010b" (I²C mode) or "110b" (UART mode, 9-bit transfer data).

UART2 Transmit/Receive Control Register 1

b7	b6	b5	b4	b3	b2	b1	b0		ymbol U2C1	Address 01FDh	After Reset 00000010b	
								Bit Symbol	Bit Name	Fun	ction	RW
								TE	Transmit Enable Bit	0 : Transmission di 1 : Transmission er		RW
								ΤI	Transmit Buffer Empty Flag	0 : Data present in 1 : No data present	U2TB register in U2TB register	RO
					Ļ			RE	Receive Enable Bit	0 : Reception disab 1 : Reception enab	led led	RW
								RI	Receive Complete Flag	0 : No data present 1 : Data present in	in U2RB register U2RB register	RO
			L.					U2IRS	UART2 Transmit Interrupt Cause Select Bit	0 : Transmit buffer 1 : Transmit is com	empty (TI bit = 1) pleted (TXEPT bit = 1)	RW
								U2RRM	UART2 Continuous Receive Mode Enable Bit	0 : Continuous rece 1 : Continuous rece		RW
								U2LCH	Data Logic Select Bit ⁽¹⁾	0 : No reverse 1 : Reverse		RW
								U2ERE	Error Signal Output Enable Bit	0 : Output disabled 1 : Output enabled		RW
NO	TE:							-	•			

1. The U2LCH bit is enabled when the SMD2 to SMD0 bits in the U2MR register are set to "001b" (clock synchronous serial I/O mode), "100b" (UART mode, 7-bit transfer data) or "101b" (UART mode, 8-bit transfer data).

Set this bit to "0" when the SMD2 to SMD0 bits are set to "010b" (I²C mode) or "110b" (UART mode, 9-bit transfer data).

UART Transmit/Rece	ive Con	trol Register 2			
b7 b6 b5 b4 b3 b2 b1 b0		ymbol JCON	Address 03B0h	After Reset X0000000b	
	Bit Symbol	Bit Name	Function	ı	RW
	U0IRS	UART0 Transmit Interrupt Cause Select Bit	0 : Transmit buffer emp 1 : Transmission complet		RW
	U1IRS	UART1 Transmit Interrupt Cause Select Bit	0 : Transmit buffer emp 1 : Transmission complet		RW
	UORRM	UART0 Continuous Receive Mode Enable Bit	0 : Continuous receive 1 : Continuous receive		RW
	U1RRM	UART1 Continuous Receive Mode Enable Bit	0 : Continuous receive 1 : Continuous receive		RW
	CLKMD0	UART1 CLK/CLKS Select Bit 0	Effective when the CLR 0 : Clock output from C 1 : Clock output from C	LK1	RW
	CLKMD1	UART1 CLK/CLKS Select Bit 1 ⁽¹⁾	0 : CLK output is only 0 1 : Transfer clock output pins function selected	ut from multiple	RW
	RCSP	Separate UART0 CTS/RTS Bit	0 : CTS/RTS shared pi 1 : CTS/RTS separated (CTS0 supplied from	ł	RW
	_ (b7)	Nothing is assigned. W When read, its content			_

NOTE:

1. When using multiple transfer clock output pins, make sure the following conditions are met:

• The CKDIR bit in the U1MR register = 0 (internal clock)

-	()			
	•	Address EFh, 01F3h, 01F7h	After Reset X0000000b	
Bit Symbol	Bit Name	Functio	on	RW
IICM	I ² C Mode Select Bit	0 : Other than I ² C mod 1 : I ² C mode	de	RW
ABC	Arbitration Lost Detecting Flag Control Bit	0 : Update per bit 1 : Update per byte		RW
BBS	Bus Busy Flag			RW (1)
_ (b3)	Reserved Bit	Set to "0"		RW
ABSCS	Bus Collision Detect Sampling Clock Select Bit	0 : Rising edge of tran 1 : Underflow signal o	sfer clock f timer Aj ⁽²⁾	RW
ACSE	Auto Clear Function Select Bit of Transmit Enable Bit			RW
SSS	Transmit Start Condition Select Bit			RW
_ (b7)				-
	U0SMF Bit Symbol IICM ABC BBS (b3) ABSCS ACSE SSS -	Bit SymbolBit NameIICMI²C Mode Select BitABCArbitration Lost Detecting Flag Control BitBBSBus Busy Flag(b3)Reserved BitABSCSBus Collision Detect Sampling Clock Select BitACSEAuto Clear Function Select Bit of Transmit Enable BitSSSTransmit Start Condition Select BitNothing is assigned. W	U0SMR to U2SMR01EFh, 01F3h, 01F7hBit SymbolBit NameFunctionIICMI2C Mode Select Bit0 : Other than I2C mode 1 : I2C modeABCArbitration Lost Detecting Flag Control Bit0 : Update per bit 1 : Update per byteBBSBus Busy Flag0 : STOP condition de 1 : START condition de 1 : START condition de 1 : Underflow signal o $\bar{(b3)}$ Reserved BitSet to "0"ABSCSBus Collision Detect Sampling Clock Select Bit0 : Rising edge of tran 1 : Underflow signal oACSEAuto Clear Function Select Bit of Transmit Enable Bit0 : No auto clear funct 1 : Auto clear at occur collisionSSSTransmit Start Condition Select Bit0 : Not synchronized to 1 : Synchronized to Ri-Nothing is assigned. When write, set to "0".	U0SMR to U2SMR01EFh, 01F3h, 01F7hX000000bBit SymbolBit NameFunctionIICMI2C Mode Select Bit0 : Other than I2C mode 1 : I2C mode0 : Other than I2C mode 1 : I2C modeABCArbitration Lost Detecting Flag Control Bit0 : Update per bit 1 : Update per byte0 : STOP condition detected 1 : START condition detected 1 : START condition detected (busy)(b3)Reserved BitSet to "0"ABSCSBus Collision Detect Sampling Clock Select Bit0 : Rising edge of transfer clock 1 : Underflow signal of timer Aj (2)ACSEAuto Clear Function

UARTi Special Mode Register (i = 0 to 2)

NOTES:

1. The BBS bit is set to "0" by writing "0" in a program. (Writing "1" has no effect.).

2. Underflow signal of timer A3 in UART0, underflow signal of timer A4 in UART1, underflow signal of timer A0 in UART2.

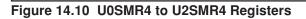

3. When a transfer begins, the SSS bit is set to "0" (not synchronized to RXDi).

Figure 14.8 UCON Register and UOSMR to U2SMR Registers

		Symbol 2 to U2SMR2 01I	Address After Reset EEh, 01F2h, 01F6h X000000b	
	Bit	1		
	Symbol	Bit Name	Function	R
	IICM2	I ² C Mode Select Bit 2	See Table 14.12 I ² C Mode Functions	R
	CSC	Clock-Synchronous Bit	0 : Disabled 1 : Enabled	RV
	SWC	SCL Wait Output Bit	0 : Disabled 1 : Enabled	RV
	ALS	SDA Output Stop Bit	0 : Disabled 1 : Enabled	RV
	STAC	UARTi Initialization Bit	0 : Disabled 1 : Enabled	RV
	SWC2	SCL Wait Output Bit 2	0: Transfer clock 1: "L" output	RV
	SDHI	SDA Output Disable Bit	0: Enabled 1: Disabled (high-impedance)	RV
	(b7)	Nothing is assigned. V When read, its conten		-
•		Symbol	Address After Reset EDh, 01F1h, 01F5h 000X0X0Xb	
•		Symbol		R
•	U0SMR	Symbol 3 to U2SMR3 01	EDh, 01F1h, 01F5h 000X0X0Xb Function Vhen write, set to "0".	RV -
•	U0SMR Bit Symbol	Symbol 3 to U2SMR3 011 Bit Name Nothing is assigned V	EDh, 01F1h, 01F5h 000X0X0Xb Function Vhen write, set to "0".	-
•	U0SMR Bit Symbol	Symbol 3 to U2SMR3 011 Bit Name Nothing is assigned V When read, its conten	EDh, 01F1h, 01F5h 000X0X0Xb Function Vhen write, set to "0". t is indeterminate. 0 : Without clock delay 1 : With clock delay Vhen write, set to "0".	-
•	UOSMR Bit Symbol (b0) CKPH	Symbol 3 to U2SMR3 011 Bit Name Nothing is assigned V When read, its conten Clock Phase Set Bit Nothing is assigned. V	EDh, 01F1h, 01F5h 000X0X0Xb Function Vhen write, set to "0". t is indeterminate. 0 : Without clock delay 1 : With clock delay Vhen write, set to "0".	- RV -
•	U0SMR Bit Symbol (b0) CKPH	Symbol 3 to U2SMR3 011 Bit Name Nothing is assigned V When read, its conten Clock Phase Set Bit Nothing is assigned. V When read, its conten Clock Output Select	EDh, 01F1h, 01F5h 000X0X0Xb Function Vhen write, set to "0". t is indeterminate. 0 : Without clock delay 1 : With clock delay Vhen write, set to "0". t is indeterminate. 0 : CLKi is CMOS output 1 : CLKi is N channel open-drain output Vhen write, set to "0".	- RV -
•	U0SMR Bit Symbol (b0) CKPH (b2) NODC	Symbol 3 to U2SMR3 011 Bit Name Nothing is assigned V When read, its conten Clock Phase Set Bit Nothing is assigned. V When read, its conten Clock Output Select Bit Nothing is assigned. V	EDh, 01F1h, 01F5h 000X0X0Xb Function Vhen write, set to "0". t is indeterminate. 0 : Without clock delay 1 : With clock delay Vhen write, set to "0". t is indeterminate. 0 : CLKi is CMOS output 1 : CLKi is N channel open-drain output Vhen write, set to "0". t is indeterminate. ^{b7 b6 b5} 0 0 0 : Without delay 0 0 1 : 1 to 2 cycle(s) of UiBRG count source	RV RV RV
	U0SMR Bit Symbol (b0) CKPH (b2) NODC (b4)	Symbol 3 to U2SMR3 011 Bit Name Nothing is assigned V When read, its conten Clock Phase Set Bit Nothing is assigned. V When read, its conten Clock Output Select Bit Nothing is assigned. V	EDh, 01F1h, 01F5h 000X0X0Xb Function Vhen write, set to "0". t is indeterminate. 0 : Without clock delay 1 : With clock delay Vhen write, set to "0". t is indeterminate. 0 : CLKi is CMOS output 1 : CLKi is N channel open-drain output Vhen write, set to "0". t is indeterminate. b7 b6 b5 0 0 0 : Without delay	- RV - RV RV

Figure 14.9 U0SMR2 to U2SMR2 Registers and U0SMR3 to U2SMR3 Registers

7 b6 b5 b4 b3 b2 b1 b0		Symbol 4 to U2SMR4 01	Address A ECh, 01F0h, 01F4h	fter Reset 00h	
	Bit Symbol	Bit Name	Function		RW
	STAREQ	Start Condition Generate Bit ⁽¹⁾	0 : Clear 1 : Start		RW
	RSTAREQ	Restart Condition Generate Bit ⁽¹⁾	0 : Clear 1 : Start		RW
	STPREQ	Stop Condition Generate Bit ⁽¹⁾	0 : Clear 1 : Start		RW
	STSPSEL	SCL,SDA Output Select Bit	0 : Start and stop conditions 1 : Start and stop conditions		RW
	ACKD	ACK Data Bit	0 : ACK 1 : NACK		RW
	ACKC	ACK Data Output Enable Bit	0 : Serial I/O data output 1 : ACK data output		RW
l	- SCLHI	SCL Output Stop Enable Bit	0 : Disabled 1 : Enabled		RW
	- SWC9	SCL Wait Bit 3	0 : SCL "L" hold disabled 1 : SCL "L" hold enabled		RW

14.1.1 Clock Synchronous Serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 14.1 lists the specifications of the clock synchronous serial I/O mode. Table 14.2 lists the registers used in clock synchronous serial I/O mode and the register values set.

Table 14.1	Clock Synchronous	Serial I/O	Mode Specifications
------------	--------------------------	------------	---------------------

Item	Specification
Transfer Data Format	Transfer data length: 8 bits
Transfer Clock	The CKDIR bit in the UiMR register = 0 (internal clock) : $fj/2(n+1)$
	• fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh
	The CKDIR bit = 1 (external clock) : Input from CLKi pin
Transmission, Reception Control	Selectable from CTS function, RTS function or CTS/RTS function disabled
Transmission Start Condition	Before transmission can start, the following requirements must be met ⁽¹⁾
	 The TE bit in the UiC1 register = 1 (transmission enabled)
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register)
	• If \overline{CTS} function is selected, input on the \overline{CTS} i pin = L
Reception Start Condition	Before reception can start, the following requirements must be met ⁽¹⁾
	 The RE bit in the UiC1 register = 1 (reception enabled)
	 The TE bit in the UiC1 register = 1 (transmission enabled)
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Interrupt Request	For transmission, one of the following conditions can be selected
Generation Timing	• The UiIRS bit $^{(2)} = 0$ (transmit buffer empty): when transferring data from the
	UiTB register to the UARTi transmit register (at start of transmission)
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from
	the UARTi transmit register
	For reception
	• When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error Detection	Overrun error (3)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit of the next data
Select Function	CLK polarity selection
	Transfer data input/output can be selected to occur synchronously with the rising or
	the falling edge of the transfer clock
	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Continuous receive mode selection
	Reception is enabled immediately by reading the UIRB register
	Switching serial data logic
	This function reverses the logic value of the transmit/receive data
	Transfer clock output from multiple pins selection (UART1)
	The output pin can be selected in a program from two UART1 transfer clock pins that
	have been set
	Separate CTS/RTS pins (UART0)
	CTS0 and RTS0 are input/output from separate pins
- 0 to 2	

i = 0 to 2

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising edge and the receive data taken in at the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.
- 2. The U0IRS and U1IRS bits respectively are bits 0 and 1 in the UCON register; the U2IRS bit is bit 4 in the U2C1 register.
- 3. If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.

Table 14.2 Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode

Register	Bit	Function
UiTB ⁽¹⁾	0 to 7	Set transmission data
UiRB ⁽¹⁾	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set a transfer rate
UiMR ⁽¹⁾	SMD2 to SMD0	Set to "001b"
	CKDIR	Select the internal clock or external clock
	IOPOL	Set to "0"
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register
	CRS	Select CTS or RTS to use
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function
	NCH	Select TXDi pin output mode
	CKPOL	Select the transfer clock polarity
	UFORM	Select the LSB first or MSB first
UiC1	TE	Set this bit to "1" to enable transmission/reception
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS ⁽²⁾	Select the source of UART2 transmit interrupt
	U2RRM ⁽²⁾	Set this bit to "1" to use continuous receive mode
	UiLCH	Set this bit to "1" to use inverted data logic
	UiERE	Set to "0"
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 2	Set to "0"
	NODC	Select clock output mode
	4 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set this bit to "1" to use continuous receive mode
	CLKMD0	Select the transfer clock output pin when the CLKMD1 bit = 1
	CLKMD1	Set this bit to "1" to output UART1 transfer clock from two pins
	RCSP	Set this bit to "1" to accept as input the UART0 CTS0 signal from the P6_4 pin
	7	Set to "0"

i = 0 to 2

- 1. Not all register bits are described above. Set those bits to "0" when writing to the registers in clock synchronous serial I/O mode.
- 2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Table 14.3 lists the functions of the input/output pins during clock synchronous serial I/O mode. Table 14.3 shows pin functions for the case where the multiple transfer clock output pin select function is deselected. Table 14.4 lists the P6_4 pin functions during clock synchronous serial I/O mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TXDi

Note that for a period from when the UAR I operation mode is selected to when transfer starts, the TXDI pin outputs an "H".

Figure 14.11 shows the transmit/receive timings during clock synchronous serial I/O mode.

Pin Name	Function	Method of Selection
TXDi	Serial Data Output	(Outputs dummy data when performing reception only)
(P6_3, P6_7, P7_0)		
RXDi	Serial Data Input	PD6_2 and PD6_6 bits in PD6 register = 0
(P6_2, P6_6, P7_1)		PD7_1 bit in PD7 register = 0
		(Can be used as an input port when performing transmission only)
CLKi	Transfer Clock Output	CKDIR bit in UiMR register = 0
(P6_1, P6_5, P7_2)	Transfer Clock Input	CKDIR bit = 1
		PD6_1 and PD6_5 bits in PD6 register = 0
		PD7_2 bit in PD7 register = 0
CTSi/RTSi	CTS Input	CRD bit in UiC0 register = 0
(P6_0, P6_4, P7_3)		CRS bit in UiC0 register = 0
		PD6_0 and PD6_4 bits in PD6 register = 0
		PD7_3 bit in PD7 register = 0
	RTS Output	CRD bit = 0
		CRS bit = 1
	I/O Port	CRD bit = 1

i = 0 to 2

Table 14.4 P6_4 Pin Functions

	Bit set Value					
Pin Function	U1C0 Register		UCON Register			PD6 Register
	CRD bit	CRS bit	RCSP bit	CLKMD1 bit	CLKMD0 bit	PD6_4 bit
P6_4	1	-	0	0	-	Input: 0, Output: 1
CTS1	0	0	0	0	-	0
RTS1	0	1	0	0	-	-
CTS0 ⁽¹⁾	0	0	1	0	-	0
CLKS1	-	-	-	1 (2)	1	-

-: "0" or "1"

- 1. In addition to this, set the CRD bit in the U0C0 register to "0" (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to "1" (RTS0 selected).
- 2. When the CLKMD1 bit = 1 and the CLKMD0 bit = 0, the following logic levels are output:
 - High if the CLKPOL bit in the U1C0 register = 0
 - Low if the CLKPOL bit = 1

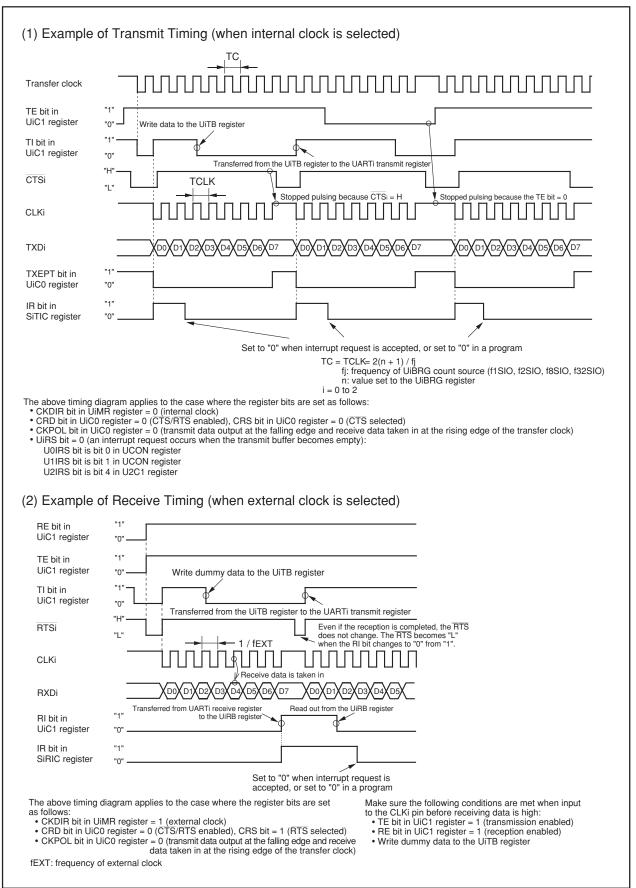


Figure 14.11 Transmit and Receive Operation

14.1.1.1 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below.

- Resetting the UiRB register (i = 0 to 2)
 - (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (serial I/O disabled)
 - (3) Set the SMD2 to SMD0 bits in the UiMR register to "001b" (clock synchronous serial I/O mode)
 - (4) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i = 0 to 2)
 - (1) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (serial I/O disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register to "001b" (clock synchronous serial I/O mode)
 - (3) "1" (transmission enabled) is written to the TE bit in the UiC1 register, regardless of the TE bit

14.1.1.2 CLK Polarity Select Function

Use the CKPOL bit in the UiC0 register (i = 0 to 2) to select the transfer clock polarity. Figure 14.12 shows the polarity of the transfer clock.

CLKi	
TXDi	D0 D1 D2 D3 D4 D5 D6 D7
RXDi	$10 \times D1 \times D2 \times D3 \times D4 \times D5 \times D6 \times D7$
	n the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising and the receive data taken in at the falling edge of the transfer clock)
CLKi	(NOTE 2)
TXDi	D0 D1 D2 D3 D4 D5 D6 D7
RXDi	1×10^{4} D1 1×10^{2} D3 1×10^{4} D5 10^{4} D7
i = 0 to 2	pplies to the case where the UFORM bit in the UiC0 register = 0

Figure 14.12 Transfer Clock Polarity

14.1.1.3 LSB First/MSB First Select Function

Use the UFORM bit in the UiC0 register (i = 0 to 2) to select the transfer format. Figure 14.13 shows the transfer format.

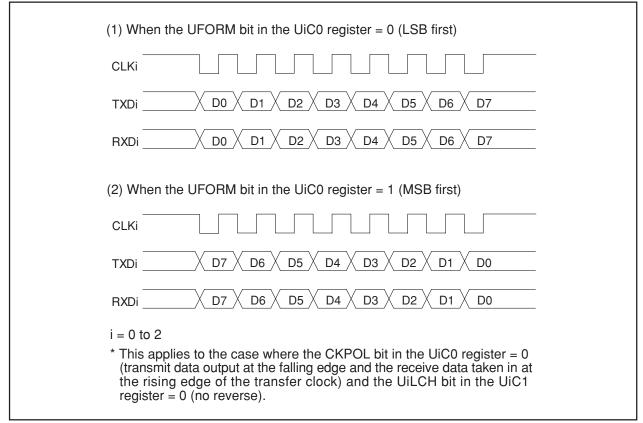


Figure 14.13 Transfer Format

14.1.1.4 Continuous Receive Mode

In continuous receive mode, receive operation becomes enable when the receive buffer register is read. It is not necessary to write dummy data into the transmit buffer register to enable receive operation in this mode. However, a dummy read of the receive buffer register is required when starting the operation mode.

When the UiRRM bit (i = 0 to 2) = 1 (continuous receive mode), the TI bit in the UiC1 register is set to "0" (data present in UiTB register) by reading the UiRB register. In this case, i.e., UiRRM bit = 1, do not write dummy data to the UiTB register in a program. The U0RRM and U1RRM bits are bit 2 and bit 3 in the UCON register, respectively, and the U2RRM bit is bit 5 in the U2C1 register.

14.1.1.5 Serial Data Logic Switching Function

When the UiLCH bit in the UiC1 register (i = 0 to 2) = 1 (reverse), the data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 14.14 shows serial data logic.

(1) When the UiLCH bit in the UiC1 register = 0 (no reverse)	
Transfer clock	
TXDi "H" <u>D0 D1 D2 D3 D4 D5 D6 D7</u> (no reverse) "L"	
(2) When the UiLCH bit in the UiC1 register = 1 (reverse)	
TXDi "H" <u>V D0 V D1 V D2 V D3 V D4 V D5 V D6 V D7</u>	
 i = 0 to 2 * This applies to the case where the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock) and the UFORM bit = 0 (LSB first). 	

Figure 14.14 Serial Data Logic Switching

14.1.1.6 Transfer Clock Output From Multiple Pins (UART1)

Use the CLKMD1 to CLKMD0 bits in the UCON register to select one of the two transfer clock output pins. Figure 14.15 shows the transfer clock output from the multiple pins function usage. This function can be used when the selected transfer clock for UART1 is an internal clock.

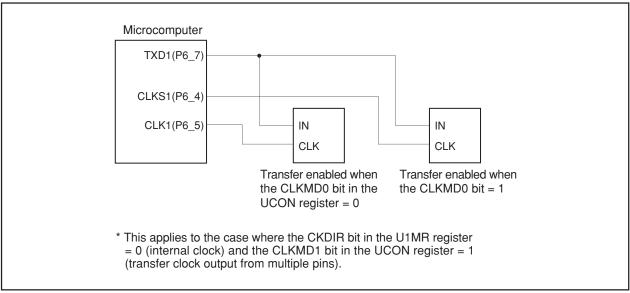


Figure 14.15 Transfer Clock Output From Multiple Pins

14.1.1.7 CTS/RTS Function

When the CTS function is used transmit and receive operation start when "L" is applied to the CTSi/RTSi (i = 0 to 2) pin. Transmit and receive operation begins when the CTSi/RTSi pin is held "L". If the "L" signal is switched to "H" during a transmit or receive operation, the operation stops before the next data. When the RTS function is used, the CTSi/RTSi pin outputs on "L" signal when the microcomputer is

ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin. CRD bit in UiC0 register = 1 (CTS/RTS function disabled)
 CTSi/RTSi pin is programmable I/O function

- CRD bit = 0, CRS bit in UiC0 register = 0 (CTS function is selected) CTSi/RTSi pin is CTS function CTSi/RTSi pin is RTS function
- CRD bit = 0, CRS bit = 1 (RTS function is selected)

14.1.1.8 CTS/RTS Separate Function (UART0)

This function separates CTS0/RTS0, outputs RTS0 from the P6 0 pin, and accepts as input the CTS0 from the P6 4 pin. To use this function, set the register bits as shown below.

- CRD bit in U0C0 register = 0 (enables UART0 CTS/RTS)
- CRS bit in U0C0 register = 1 (outputs UART0 RTS)
- CRD bit in U1C0 register = 0 (enables UART1 CTS/RTS)
- CRS bit in U1C0 register = 0 (inputs UART1 $\overline{\text{CTS}}$)
- RCSP bit in UCON register = 1 (inputs $\overline{\text{CTS}}$ 0 from the P6 4 pin)
- CLKMD1 bit in UCON register = 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, UART1 CTS/RTS separate function cannot be used.

Figure 14.16 shows CTS/RTS separate function usage.

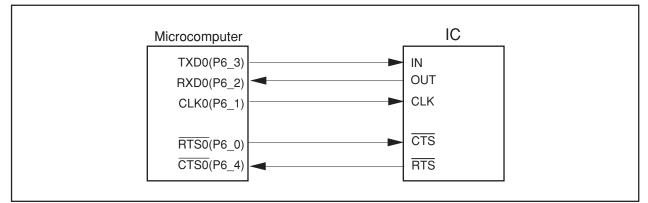


Figure 14.16 CTS/RTS Separate Function

14.1.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Tables 14.5 lists the specifications of the UART mode. Table 14.6 lists the registers used in UART mode and the register values set.

Item	Specification
Transfer Data Format	Character bit (transfer data): Selectable from 7, 8 or 9 bits
	Start bit: 1 bit
	 Parity bit: Selectable from odd, even, or none
	Stop bit: Selectable from 1 or 2 bits
Transfer Clock	• CKDIR bit in UiMR register = 0 (internal clock) : fj/ 16(n+1)
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh
	 The CKDIR bit = 1 (external clock) : fEXT/16(n+1)
	fEXT: Input from CLKi pin. n :Setting value of the UiBRG register 00h to FFh
Transmission, Reception Control	Selectable from CTS function, RTS function or CTS/RTS function disabled
Transmission Start Condition	Before transmission can start, the following requirements must be met
	 The TE bit in the UiC1 register = 1 (transmission enabled)
	 The TI bit in the UiC1 register = 0 (data present in UiTB register)
	• If \overline{CTS} function is selected, input on the \overline{CTSi} pin = L
Reception Start Condition	Before reception can start, the following requirements must be met
	• The RE bit in the UiC1 register = 1 (reception enabled)
	Start bit detection
Interrupt Request	For transmission, one of the following conditions can be selected
Generation Timing	• The UiIRS bit ⁽¹⁾ = 0 (transmit buffer empty): when transferring data from the UiTB register
3	to the UARTi transmit register (at start of transmission)
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data
	from the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register
	(at completion of reception)
Error Detection	Overrun error ⁽²⁾
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the bit one before the last stop bit of the next data
	• Framing error ⁽³⁾
	This error occurs when the number of stop bits set is not detected
	Parity error ⁽³⁾
	This error occurs when if parity is enabled, the number of 1's in parity and character
	bits does not match the number of 1's set
	• Error sum flag
	This flag is set to "1" when any of the overrun, framing, or parity errors occur
Select Function	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can be selected
	Serial data logic switch
	This function reverses the logic of the transmit/receive data. The start and stop bits are not reversed.
	 TXD, RXD I/O polarity switch This function reverses the polarities of the TXD pin output and RXD pin input.
	The logic levels of all I/O data is reversed.
	Separate CTS/RTS pins (UART0)
	CTS0 and RTS0 are input/output from separate pins

Table 14.5	UART	Mode	Specifications
------------	------	------	----------------

i = 0 to 2

NOTES:

- 1. The U0IRS and U1IRS bits are bits 0 and 1 in the UCON register. The U2IRS bit is bit 4 in the U2C1 register.
- 2. If an overrun error occurs, the value of the UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.
- 3. The timing at which the framing error flag and the parity error flag are set is detected when data is transferred from the UARTi receive register to the UiRB register.

Table 14.6 Registers to Be Used and Settings in UART Mode

Register	Bit	Function
UiTB	0 to 8	Set transmission data ⁽¹⁾
UiRB	0 to 8	Reception data can be read ⁽¹⁾
	OER,FER,PER,SUM	Error flag
UiBRG	0 to 7	Set a transfer rate
UiMR	SMD2 to SMD0	Set these bits to "100b" when transfer data is 7-bit long
		Set these bits to "101b" when transfer data is 8-bit long
		Set these bits to "110b" when transfer data is 9-bit long
	CKDIR	Select the internal clock or external clock
	STPS	Select the stop bit
	PRY, PRYE	Select whether parity is included and whether odd or even
	IOPOL	Select the TXD/RXD input/output polarity
UiC0	CLK0, CLK1	Select the count source for the UiBRG register
	CRS	Select CTS or RTS to use
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function
	NCH	Select TXDi pin output mode
	CKPOL	Set to "0"
	UFORM	LSB first or MSB first can be selected when transfer data is 8-bit long. Set this
		bit to "0" when transfer data is 7- or 9-bit long.
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS ⁽²⁾	Select the source of UART2 transmit interrupt
	U2RRM ⁽²⁾	Set to "0"
	UiLCH	Set this bit to "1" to use inverted data logic
	UiERE	Set to "0"
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because the CLKMD1 bit = 0
	CLKMD1	Set to "0"
	RCSP	Set this bit to "1" to accept as input the UART0 $\overline{\text{CTS0}}$ signal from the P6_4 pin
	7	Set to "0"

i = 0 to 2

NOTES:

- 1. The bits used for transmit/receive data are as follows:
 - Bit 0 to bit 6 when transfer data is 7-bit long
 - Bit 0 to bit 7 when transfer data is 8-bit long
 - Bit 0 to bit 8 when transfer data is 9-bit long.
- 2. Set bit 4 to bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are included in the UCON register.

Table 14.7 lists the functions of the input/output pins during UART mode. Table 14.8 lists the P6_4 pin functions during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TXDi pin outputs an "H".

Figure 14.17 shows the typical transmit timings in UART mode. Figure 14.18 shows the typical receive timing in UART mode.

Pin Name	Function	Method of Selection
TXDi	Serial Data Output	(Outputs "H" when performing reception only)
(P6_3, P6_7, P7_0)		
RXDi	Serial Data Input	PD6_2 and PD6_6 bits in PD6 register = 0
(P6_2, P6_6, P7_1)		PD7_1 bit in PD7 register = 0
		(Can be used as an input port when performing transmission only)
CLKi	I/O Port	CKDIR bit in UiMR register = 0
(P6_1, P6_5, P7_2)	Transfer Clock Input	CKDIR bit in UiMR register = 1
		PD6_1 and PD6_5 bits in PD6 register = 0
		PD7_2 bit in PD7 register = 0
CTSi/RTSi	CTS Input	CRD bit in UiC0 register = 0
(P6_0, P6_4, P7_3)		CRS bit in UiC0 register = 0
		PD6_0 and PD6_4 bits in PD6 register = 0
		PD7_3 bit in PD7 register = 0
	RTS Output	CRD bit = 0
		CRS bit = 1
	I/O Port	CRD bit = 1

Table 14.7 I/O Pin Functions

i = 0 to 2

Table 14.8 P6_4 Pin Functions

	Bit set Value				
Pin Function	U1C0 Register		UCON Register		PD6 Register
	CRD bit	CRS bit	RCSP bit	CLKMD1 bit	PD6_4 bit
P6_4	1	-	0	0	Input: 0, Output: 1
CTS1	0	0	0	0	0
RTS1	0	1	0	0	-
CTS0 ⁽¹⁾	0	0	1	0	0

-: "0" or "1"

NOTE:

1. In addition to this, set the CRD bit in the U0C0 register to "0" (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to "1" (RTS0 selected).

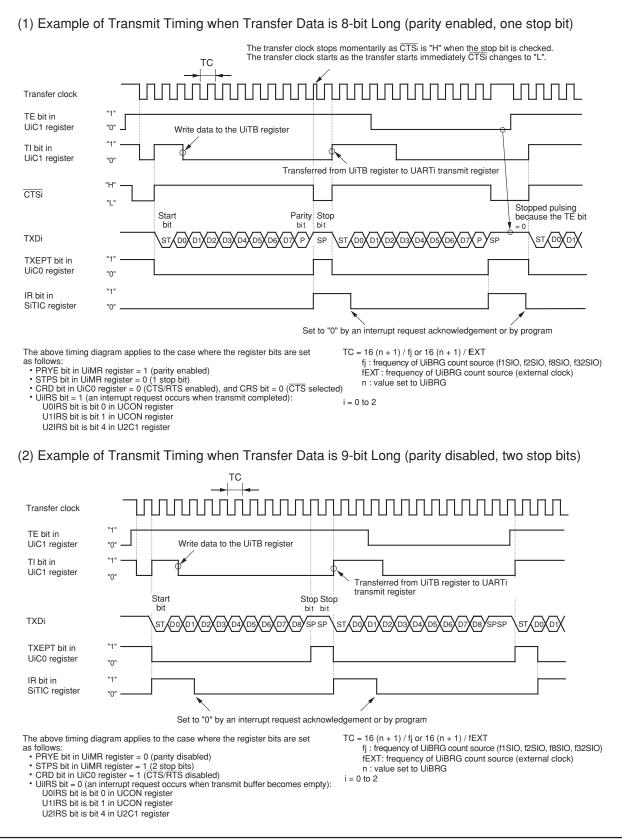


Figure 14.17 Transmit Operation

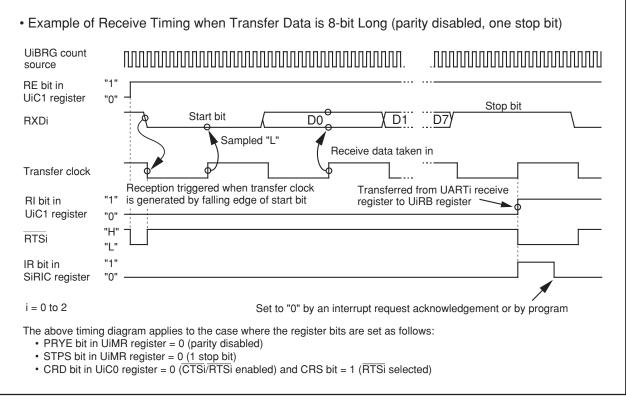


Figure 14.18 Receive Operation

14.1.2.1 Bit Rates

In UART mode, the frequency set by the UiBRG register (i = 0 to 2) divided by 16 become the bit rates. Table 14.9 lists example of bit rates and settings.

	ample of bit flates	und Cottingo			
Bit-rate	Count source	Peripheral function	n clock: 16MHz	Peripheral function clock: 24MHz	
(bps)	of BRG	Set value of BRG: n	Actual time (bps)	Set value of BRG: n	Actual time (bps)
1200	f8	103 (67h)	1202	155 (9Bh)	1202
2400	f8	51 (33h)	2404	77 (4Dh)	2404
4800	f8	25 (19h)	4808	38 (26h)	4808
9600	f1	103 (67h)	9615	155 (9Bh)	9615
14400	f1	68 (44h)	14493	103 (67h)	14423
19200	f1	51 (33h)	19231	77 (4Dh)	19231
28800	f1	34 (22h)	28571	51 (33h)	28846
31250	f1	31 (1Fh)	31250	47 (2Fh)	31250
38400	f1	25 (19h)	38462	38 (26h)	38462
51200	f1	19 (13h)	50000	28 (1Ch)	51724

Table 14.9 Example of Bit Rates and Settings	Table 14.9	Example	of Bit Ra	ates and	Settings
--	------------	---------	-----------	----------	----------

14.1.2.2 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in UART mode, follow the procedures below.

- Resetting the UiRB register (i = 0 to 2)
 - (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
 - (2) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i = 0 to 2)
 - (1) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (Serial I/O disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register to "001b", "101b", "110b".
 - (3) "1" (transmission enabled) is written to the TE bit in the UiC1 register, regardless of the TE bit

14.1.2.3 LSB First/MSB First Select Function

As shown in Figure 14.19, use the UFORM bit in the UiC0 register to select the transfer format. This function is valid when transfer data is 8-bit long.

(1) When the UFORM bit in the UiC0 register = 0 (LSB first)
TXDi ST D0 D1 D2 D3 D4 D5 D6 D7 P SP
RXDi ST D0 D1 D2 D3 D4 D5 D6 D7 P SP
(2) When the UFORM bit = 1 (MSB first)
CLKi
TXDi ST D7 D6 D5 D4 D3 D2 D1 D0 P SP
RXDi ST D7 D6 D5 D4 D3 D2 D1 D0 P SP
i = 0 to 2
ST: Start bit P: Parity bit SP: Stop bit
 NOTE: 1. This applies to the case where the register bits are set as follows: CKPOL bit in UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock) UiLCH bit in UiC1 register = 0 (no reverse) STPS bit in UiMR register = 0 (1 stop bit) PRYE bit in UiMR register = 1 (parity enabled)

Figure 14.19 Transfer Format

14.1.2.4 Serial Data Logic Switching Function

The data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 14.20 shows serial data logic.

(1) When the	UiLCH bit in the UiC1 register = 0 (no reverse)
Transfer clock	
TXDi (no reverse)	"H"
(2) When the	UiLCH bit = 1 (reverse)
Transfer clock	
TXDi (reverse)	"H" <u>ST (D0) D1) D2 (D3) D4) D5 (D6) D7) P</u> SP
i = 0 to 2 ST: Start bit P: Parity bit SP: Stop bit	
• CKPC • UFOF • STPS	plies to the case where the register bit are set as follows: DL bit in UiC0 register = 0 (transmit data output at the falling edge of the transfer clock) RM bit in UiC0 register = 0 (LSB first) bit in UiMR register = 0 (1 stop bit) bit in UiMR register = 1 (parity enabled)

Figure 14.20 Serial Data Logic Switching

14.1.2.5 TXD and RXD I/O Polarity Inverse Function

This function inverses the polarities of the TXDi pin output and RXDi pin input. The logic levels of all input/output data (including the start, stop and parity bits) are inversed. Figure 14.21 shows the TXD and RXD input/output polarity inverse.

(1) When the IOPOL bit in the UiMR register = 0 (no reverse)
TXDi "H" ST (D0) D1) D2) D3) D4) D5) D6 (D7) P) SP
RXDi "H" ST (D0) D1) D2) D3) D4) D5) D6) D7) P) SP (no reverse) "L"
(2) When the IOPOL bit = 1 (reverse)
TXDi "H"
RXDi ^{"H"} / ST <u>V D0 V D1 V D2 V D3 V D4 V D5 V D6 V D7 V P</u> SP
i = 0 to 2 ST: Start bit P: Parity bit SP: Stop bit
NOTE: 1. This applies to the case where the register bits are set as follows: • UFORM bit in UiC0 register = 0 (LSB first) • STPS bit in UiMR register = 0 (1 stop bit) • PRYE bit in UiMR register = 1 (parity enabled)

Figure 14.21 TXD and RXD I/O Polarity Inverse

14.1.2.6 CTS/RTS Function

When the $\overline{\text{CTS}}$ function is used transmit operation start when "L" is applied to the $\overline{\text{CTSi}/\text{RTSi}}$ (i = 0 to 2) pin. Transmit operation begins when the $\overline{\text{CTSi}/\text{RTSi}}$ pin is held "L". If the "L" signal is switched to "H" during a transmit operation, the operation stops before the next data.

When the RTS function is used, the CTSi/RTSi pin outputs on "L" signal when the microcomputer is ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

- CRD bit in UiC0 register = 1 (disables UART0 CTS/RTS function) CTSi/RTSi pin is programmable I/O function
- CRD bit = 0, CRS bit in UiC0 register= 0 (\overline{CTS} function is selected) $\overline{CTSi}/\overline{RTSi}$ pin is \overline{CTS} function
- CRD bit = 0, CRS bit = 1 (RTS function is selected)
 CTSi/RTSi pin is RTS function

14.1.2.7 CTS/RTS Separate Function (UART0)

This function separates $\overline{\text{CTS0}/\text{RTS0}}$, outputs $\overline{\text{RTS0}}$ from the P6_0 pin, and accepts as input the $\overline{\text{CTS0}}$ from the P6_4 pin. To use this function, set the register bits as shown below.

- CRD bit in U0C0 register = 0 (enables UART0 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- CRS bit in U0C0 register = 1 (outputs UART0 RTS)
- CRD bit in U1C0 register = 0 (enables UART1 CTS/RTS)
- CRS bit in U1C0 register = 0 (inputs UART1 CTS)
- RCSP bit in UCON register = 1 (inputs $\overline{\text{CTS}}$ 0 from the P6_4 pin)
- CLKMD1 bit in UCON register = 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, UART1 CTS/RTS separate function cannot be used. Figure 14.22 shows CTS/RTS separate function usage.

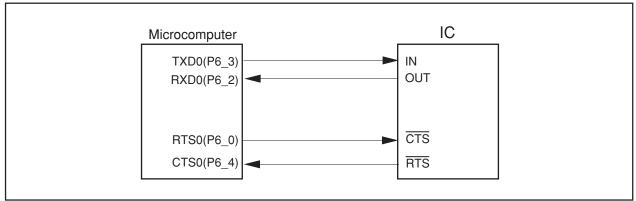


Figure 14.22 CTS/RTS Separate Function

14.1.3 Special Mode 1 (I²C Mode)

I²C mode is provided for use as a simplified I²C interface compatible mode. Table 14.10 lists the specifications of the I²C mode. Figure 14.23 shows the block diagram for I²C mode. Table 14.11 lists the registers used in the I²C mode and the register values set. Table 14.12 lists the funcitons in I²C mode. Figure 14.24 shows the transfer to the UiRB register and interrupt timing.

As shown in Table 14.12, the microcomputer is placed in I²C mode by setting the SMD2 to SMD0 bits to "010b" and the IICM bit to "1". Because SDAi transmit output has a delay circuit attached, SDAi output does not change state until SCLi goes low and remains stably low.

Item	Specification		
Transfer Data Format	Transfer data length: 8 bits		
Transfer Clock	During master		
	The CKDIR bit in the UiMR register = 0 (internal clock) : fj/ 2(n+1)		
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh		
	During slave		
	The CKDIR bit = 1 (external clock) : Input from SCLi pin		
Transmission Start Condition	Before transmission can start, the following requirements must be met (1)		
	 The TE bit in the UiC1 register = 1 (transmission enabled) 		
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register) 		
Reception Start Condition	Before reception can start, the following requirements must be met ⁽¹⁾		
	 The RE bit in the UiC1 register = 1 (reception enabled) 		
	 The TE bit in the UiC1 register = 1 (transmission enabled) 		
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register) 		
Interrupt Request	When start or stop condition is detected, acknowledge undetected, and acknowledge		
Generation Timing	detected		
Error Detection	Overrun error (2)		
	This error occurs if the serial I/O started receiving the next data before reading the		
	UiRB register and received the 8th bit of the next data		
Select Function	Arbitration lost		
	Timing at which the ABT bit in the UiRB register is updated can be selected		
	• SDAi digital delay		
	No digital delay or a delay of 2 to 8 UiBRG count source clock cycles selectable		
	Clock phase setting		
	With or without clock delay selectable		
- 0 to 2			

Table 14.10 I²C Mode Specifications

i = 0 to 2

NOTES:

1. When an external clock is selected, the conditions must be met while the external clock is in the high state.

2. If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.

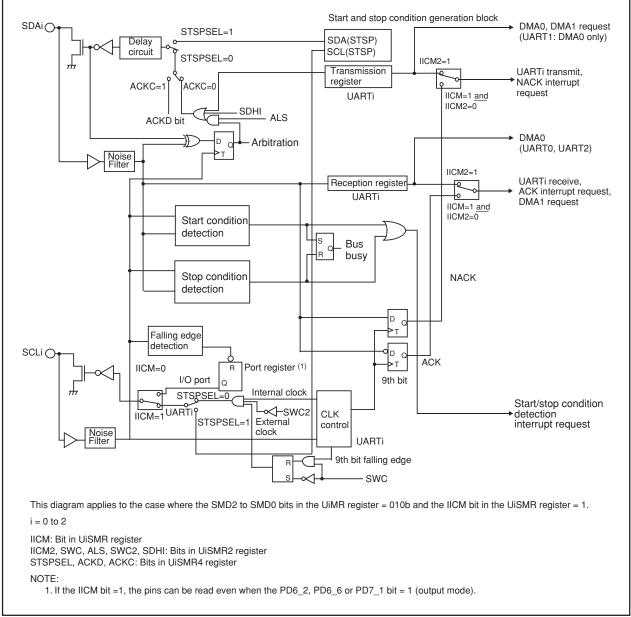


Figure 14.23 I²C Mode Block Diagram

Table 14.11 Registers to Be Used and Settings in I²C Mode

		Function				
Register	Bit	Master	Slave			
UiTB (1)	0 to 7	Set transmission data	Slave			
UiRB (1)	0 to 7	Reception data can be read				
UIRB(I)	8	ACK or NACK is set in this bit				
	ABT					
	OER	Arbitration lost detection flag	Invalid			
		Overrun error flag				
UiBRG	0 to 7	Set a transfer rate	Invalid			
UiMR (1)	SMD2 to SMD0	Set to "010b"				
	CKDIR	Set to "0"	Set to "1"			
	IOPOL	Set to "0"				
UiC0	CLK1, CLK0	Select the count source for the UiBRG register	Invalid			
	CRS	Invalid because the CRD bit = 1				
	TXEPT	Transmit register empty flag				
	CRD	Set to "1"				
	NCH	Set to "1"				
	CKPOL	Set to "0"				
	UFORM	Set to "1"				
UiC1	TE	Set this bit to "1" to enable transmission				
	TI	Transmit buffer empty flag				
	RE	Set this bit to "1" to enable reception				
	RI	Reception complete flag				
	U2IRS (2)	Invalid				
	U2RRM (2),	Set to "0"				
	UiLCH, UiERE					
UiSMR	IICM	Set to "1"				
	ABC	Select the timing at which arbitration-lost	Invalid			
		is detected				
	BBS	Bus busy flag	1			
	3 to 7	Set to "0"				
UiSMR2	IICM2	See Table 14.12 I ² C Mode Functions				
	CSC	Set this bit to "1" to enable clock synchronization Set to "0"				
	SWC	Set this bit to "1" to have SCLi output fixed to "L" at the falling edge of the 9th bit of clock				
	ALS	Set this bit to "1" to have SDAi output	Set to "0"			
		stopped when arbitration-lost is detected				
	STAC	Set to "0"	Set this bit to "1" to initialize UARTi at			
			start condition detection			
	SWC2	Set this bit to "1" to have SCLi output forci	bly pulled low			
	SDHI	Set this bit to "1" to disable SDAi output				
	7	Set to "0"				
UiSMR3	0, 2, 4 and NODC	Set to "0"				
	CKPH	See Table 14.12 I ² C Mode Functions				
	DL2 to DL0	Set the amount of SDAi digital delay				
UiSMR4	STAREQ	Set this bit to "1" to generate start condition	Set to "0"			
olomit i	RSTAREQ	Set this bit to "1" to generate restart condition	Set to "0"			
	STPREQ	Set this bit to "1" to generate stop condition	Set to "0"			
	STSPSEL	Set this bit to "1" to generate stop condition	Set to "0"			
	ACKD	Select ACK or NACK				
	ACKC	Set this bit to "1" to output ACK data				
	SCLHI	Set this bit to "1" to butput ACK data	Set to "0"			
		stopped when stop condition is detected				
	SWCO		Pot this hit to "1" to set the COL: to "L" had			
	SWC9	Set to "0"	Set this bit to "1" to set the SCLi to "L" hold			
			at the falling edge of the 9th bit of clock			
IFSR0	IFSR06, ISFR07	Set to "1"				
UCON	U0IRS, U1IRS	Invalid				
	2 to 7	Set to "0"				

i = 0 to 2 NOTES:

1. Not all register bits are described above. Set those bits to "0" when writing to the registers in I²C mode.

2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Table 14.12 I²C Mode Functions

	Clock	l ² C	Mode (SMD2 to S	MD0 = 010b, IICM	= 1)
Function	Synchronous Serial I/O Mode	IICM2 = 0 (NACK/ACK interrupt)		IICM2 = 1 (UART transmit/receive interrupt)	
	(SMD2 to SMD0 = 001b, IICM = 0)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)
Factor of Interrupt Number 6, 7 and 10 ^{(1) (5) (7)}	-		tection or stop cor STSPSEL Bit Fu		
Factor of Interrupt Number 15, 17 and $19^{(1)(6)}$	UARTi transmission Transmission started or completed (selected by UiIRS)	No acknowledgmo (NACK) Rising edge of SC		UARTi transmission Rising edge of SCLi 9th bit	UARTi transmission Falling edge of SCLi next to the 9th bit
Factor of Interrupt Number 16, 18 and 20 ^{(1) (6)}	UARTi reception When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Acknowledgment Rising edge of SC		UARTi reception Falling edge of S	CLi 9th bit
Timing for Transferring Data from UART Reception Shift Register to UiRB Register	CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Rising edge of SC	CLi 9th bit	Falling edge of SCLi 9th bit	Falling and rising edges of SCLi 9th bit
UARTi Transmission Output Delay	Not delayed	Delayed			
Functions of P6_3, P6_7 and P7_0 Pins	TXDi output	SDAi input/output			
Functions of P6_2, P6_6 and P7_1 Pins	RXDi input	SCLi input/output			
Functions of P6_1, P6_5 and P7_2 Pins	output selected	- (Cannot be used in I ² C mode)			
Noise Filter Width Read RXDi and SCLi Pins Levels	15 ns Possible when the corresponding port direction bit = 0	1 51		direction bit is set	
Initial Value of TXDi and SDAi Outputs	CKPOL = 0 (H) CKPOL = 1 (L)	The value set in the port register before		fore setting I ² C mc	ode ⁽²⁾
Initial and End Value of SCLi	-	Н	L	Н	L
DMA1 Factor (6)	UARTi reception	Acknowledgment detection (ACK)		UARTi reception Falling edge of S	CLi 9th bit
Store Received Data	1st to 8th bits of t 7 to bit 0 in the Ui	of the received data are stored into bit UiRB register			0 in UiRB register (3)
Read Received Data	The UiRB register	er status is read			Bit 6 to bit 0 in the UiRB register ⁽⁴⁾ are read as bit 7 to bit 1. Bit 8 in the UiRB register is read as bit 0.

i = 0 to 2 NOTES:

I. If the source or cause of any interrupt is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). (Refer to 22.7 Interrupts.) If one of the bits shown below is changed, the interrupt source, the interrupt timing, etc. change. Therefore, always be sure to set the IR bit to "0" (interrupt not requested) after changing those bits.
SMD2 to SMD0 bits in UiMR register
IICM bit in UiSMR2 register
IICM bit in UiSMR2 register
CKPH bit in UiSMR3 register
Second data transfer to the UiRB register (rising edge of SCLi 9th bit)
See Figure 14.26 STSPSEL Bit Functions.
See Figure 14.26 STSPSEL Bit Functions.
See Figure 14.26 Transfer to UiRB Register and Interrupt Timing.
When using UART0, be sure to set the IFSR06 bit in the IFSR0 register to "1" (cause of interrupt: UART1 bus collision detection). When using UART1, be sure to set the IFSR07 bit in the IFSR0 register to "1" (cause of interrupt: UART1 bus collision detection).

14. Serial I/0	0
----------------	---

SCLi	
SDAi	D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0 \ D8(ACK, NACK)
	↑ ACK interrupt (DMA1 request), NACK interrupt ↑
	Transfer to UiRB register
	b15 b9 b8 b7 b0 D8 D7 D8 D5 D4 D3 D2 D1 D0 UIRB register
(2) IICI	M2 = 0, CKPH = 1 (clock delay)
SCLi	1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit
SDAi	D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0 \ D8(ACK, NACK)
	ACK interrupt (DMA1 request), NACK interrupt
	Transfer to UiRB register
	b15 b9 b8 b7 b0 b0 b8 b7 b0 b0 b1 b7 b6 b5 b4 b3 b2 b1 b0 UIRB register
(3) IICI	M2 = 1 (UART transmit/receive interrupt), CKPH = 0
SCLi	1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit
SDAi	D7 D6 D5 D4 D3 D2 D1 D0 D8(ACK, NACK)
	Receive interrupt Transmit interrupt (DMA1 request)
	∱ Transfer to UiRB register
(4) IICI	M2 = 1, CKPH = 1
SCLi	1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit
SDAi	D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0 \ D8 (ACK, NACK)
	Receive interrupt (DMA1 request)
	Transfer to UiRB register Transfer to UiRB register
	b15 b9 b8 b7 b0 b15 b9 b8 b7 b0 D0 - D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D0
i = 0 te	

Figure 14.24 Transfer to UiRB Register and Interrupt Timing

14.1.3.1 Detection of Start and Stop Condition

Whether a start or a stop condition has been detected is determined.

A start condition-detected interrupt request is generated when the SDAi pin changes state from high to low while the SCLi pin is in the high state. A stop condition-detected interrupt request is generated when the SDAi pin changes state from low to high while the SCLi pin is in the high state.

Figure 14.25 shows the detection of start and stop condition.

Because the start and stop condition-detected interrupts share the interrupt control register and vector, check the BBS bit in the UiSMR register to determine which interrupt source is requesting the interrupt.

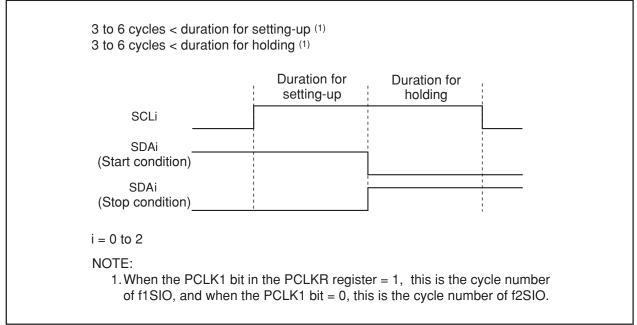


Figure 14.25 Detection of Start and Stop Condition

14.1.3.2 Output of Start and Stop Condition

- A start condition is generated by setting the STAREQ bit in the UiSMR4 register (i = 0 to 2) to "1" (start).
- A restart condition is generated by setting the RSTAREQ bit in the UiSMR4 register to "1" (start).
- A stop condition is generated by setting the STPREQ bit in the UiSMR4 register to "1" (start).
- The output procedure is described below.
- (1) Set the STAREQ bit, RSTAREQ bit or STPREQ bit to "1" (start).
- (2) Set the STSPSEL bit in the UiSMR4 register to "1" (output).

Table 14.13 and Figure 14.26 show the functions of the STSPSEL bit.

Table 14.13 STSPSEL Bit Functions

Function	STSPSEL Bit = 0	STSPSEL Bit = 1
Output of SCLi and SDAi Pins	Output of transfer clock and	Output of a start/stop condition
	data	according to the STAREQ,
	Output of start/stop condition is	RSTAREQ and STPREQ bits
	accomplished by a program	
	using ports (not automatically	
	generated in hardware)	
Start/Stop Condition Interrupt	Start/stop condition detection	Finish generating start/stop condition
Request Generation Timing		

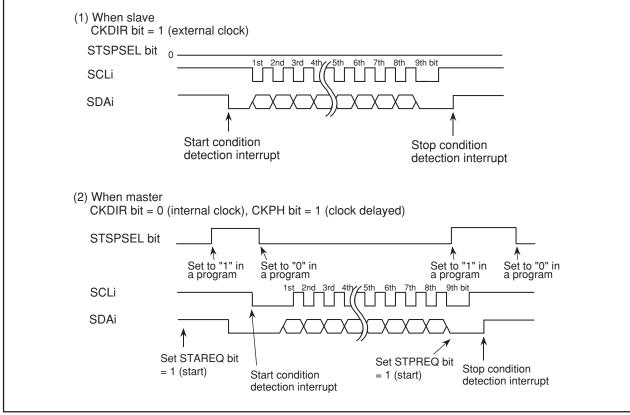


Figure 14.26 STSPSEL Bit Functions

14.1.3.3 Arbitration

Unmatching of the transmit data and SDAi pin input data is checked synchronously with the rising edge of SCLi. Use the ABC bit in the UiSMR register to select the timing at which the ABT bit in the UiRB register is updated. If the ABC bit = 0 (updated per bit), the ABT bit is set to "1" at the same time unmatching is detected during check, and is set to "0" when not detected. In cases when the ABC bit is set to "1", if unmatching is detected even once during check, the ABT bit is set to "1" (unmatching detected) at the falling edge of the clock pulse of 9th bit. If the ABT bit needs to be updated per byte, set the ABT bit to "0" (undetected) after detecting acknowledge in the first byte, before transferring the next byte.

Setting the ALS bit in the UiSMR2 register to "1" (SDA output stop enabled) causes arbitration-lost to occur, in which case the SDAi pin is placed in the high-impedance state at the same time the ABT bit is set to "1" (unmatching detected).

14.1.3.4 Transfer Clock

Data is transmitted/received using a transfer clock like the one shown in Figure 14.24.

The CSC bit in the UiSMR2 register is used to synchronize the internally generated clock (internal SCLi) and an external clock supplied to the SCLi pin. In cases when the CSC bit is set to "1" (clock synchronization enabled), if a falling edge on the SCLi pin is detected while the internal SCLi is high, the internal SCLi goes low, at which time the value of the UiBRG register is reloaded with and starts counting in the low-level interval. If the internal SCLi changes state from low to high while the SCLi pin is low, counting stops, and when the SCLi pin goes high, counting restarts.

In this way, the UARTi transfer clock is comprised of the logical product of the internal SCLi and SCLi pin signal. The transfer clock works from a half period before the falling edge of the internal SCLi 1st bit to the rising edge of the 9th bit. To use this function, select an internal clock for the transfer clock.

The SWC bit in the UiSMR2 register allows to select whether the SCLi pin should be fixed to or freed from low-level output at the falling edge of the 9th clock pulse.

If the SCLHI bit in the UiSMR4 register is set to "1" (enabled), SCLi output is turned off (placed in the high-impedance state) when a stop condition is detected.

Setting the SWC2 bit in the UiSMR2 register = 1 (0 output) makes it possible to forcibly output a lowlevel signal from the SCLi pin even while sending or receiving data. Setting the SWC2 bit to "0" (transfer clock) allows the transfer clock to be output from or supplied to the SCLi pin, instead of outputting a lowlevel signal.

If the SWC9 bit in the UiSMR4 register is set to "1" (SCL hold low enabled) when the CKPH bit in the UiSMR3 register = 1, the SCLi pin is fixed to low-level output at the falling edge of the clock pulse next to the ninth. Setting the SWC9 bit = 0 (SCL hold low disabled) frees the SCLi pin from low-level output.

14.1.3.5 SDA Output

The data written to bit 7 to bit 0 (D7 to D0) in the UiTB register is sequentially output beginning with D7. The ninth bit (D8) is ACK or NACK.

The initial value of SDAi transmit output can only be set when IICM = 1 (I²C mode) and the SMD2 to SMD0 bits in the UiMR register = 000b (serial I/O disabled).

The DL2 to DL0 bits in the UiSMR3 register allow to add no delays or a delay of 2 to 8 UiBRG count source clock cycles to SDAi output.

Setting the SDHI bit in the UiSMR2 register = 1 (SDA output disabled) forcibly places the SDAi pin in the high-impedance state. Do not write to the SDHI bit synchronously with the rising edge of the UARTi transfer clock. This is because the ABT bit may inadvertently be set to "1" (detected).

14.1.3.6 SDA Input

When the IICM2 bit = 0, the 1st to 8th bits (D7 to D0) of received data are stored in the bit 7 to bit 0 in the UIRB register. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit = 1, the 1st to 7th bits (D7 to D1) of received data are stored in the bit 6 to bit 0 in the UiRB register and the 8th bit (D0) is stored in the bit 8 in the UiRB register. Even when the IICM2 bit = 1, providing the CKPH bit = 1, the same data as when the IICM2 bit = 0 can be read out by reading the UiRB register after the rising edge of the corresponding clock pulse of 9th bit.

14.1.3.7 ACK and NACK

If the STSPSEL bit in the UiSMR4 register is set to "0" (start and stop conditions not generated) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the value of the ACKD bit in the UiSMR4 register is output from the SDAi pin.

If the IICM2 bit = 0, a NACK interrupt request is generated if the SDAi pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDAi pin is low at the rising edge of the 9th bit of transmit clock pulse.

If ACKi is selected for the cause of DMA1 request, a DMA transfer can be activated by detection of an acknowledge.

14.1.3.8 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit = 1 (UARTi initialization enabled), the serial I/O operates as described below.

- The transmit shift register is initialized, and the content of the UiTB register is transferred to the transmit shift register. In this way, the serial I/O starts sending data synchronously with the next clock pulse applied. However, the UARTi output value does not change state and remains the same as when a start condition was detected until the first bit of data is output synchronously with the input clock.
- The receive shift register is initialized, and the serial I/O starts receiving data synchronously with the next clock pulse applied.
- The SWC bit is set to "1" (SCL wait output enabled). Consequently, the SCLi pin is pulled low at the falling edge of the ninth clock pulse.

Note that when UARTi transmission/reception is started using this function, the TI bit does not change state. Note also that when using this function, the selected transfer clock should be an external clock.

14.1.4 Special Mode 2

Multiple slaves can be serially communicated from one master. Transfer clock polarity and phase are selectable. Table 14.14 lists the specifications of Special Mode 2. Figure 14.27 shows communication control example for Special Mode 2. Table 14.15 lists the registers used in Special Mode 2 and the register values set.

Item	Specification		
Transfer data format	Transfer data length: 8 bits		
Transfer clock	Master mode		
	The CKDIR bit in the UiMR register = 0 (internal clock) : $f/ 2(n+1)$		
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh		
	Slave mode		
	The CKDIR bit = 1 (external clock selected) : Input from CLKi pin		
Transmit/receive control	Controlled by input/output ports		
Transmission start condition	Before transmission can start, the following requirements must be met ⁽¹⁾		
	 The TE bit in the UiC1 register = 1 (transmission enabled) 		
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register) 		
Reception start condition	Before reception can start, the following requirements must be met ⁽¹⁾		
	 The RE bit in the UiC1 register = 1 (reception enabled) 		
	 The TE bit in the UiC1 register = 1 (transmission enabled) 		
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register) 		
Interrupt Request	For transmission, one of the following conditions can be selected		
Generation Timing	• The UiIRS bit $^{(2)} = 0$ (transmit buffer empty): when transferring data from the UiTB		
	register to the UARTi transmit register (at start of transmission)		
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from		
	the UARTi transmit register		
	For reception		
	• When transferring data from the UARTi receive register to the UiRB register (at		
	completion of reception)		
Error detection	Overrun error ⁽³⁾		
	This error occurs if the serial I/O started receiving the next data before reading the		
	UiRB register and received the 7th bit of the next data		
Select function	Clock phase setting		
	Selectable from four combinations of transfer clock polarities and phases		

Table 14.14 Special Mode 2 Specifications

i = 0 to 2

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the low state.
- 2. The U0IRS and U1IRS bits respectively are bits 0 and 1 in the UCON register ; the U2IRS bit is bit 4 in the U2C1 register.
- 3. If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in SiRIC register does not change.

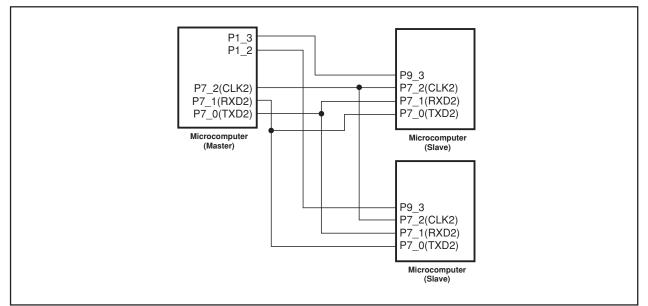


Figure 14.27 Serial Bus Communication Control Example (UART2)

Table 14.15 Registers to Be Used and Settings in Special Mode 2

Register	Bit	Function	
UiTB ⁽¹⁾	0 to 7	Set transmission data	
UiRB ⁽¹⁾	0 to 7	Reception data can be read	
	OER	Overrun error flag	
UiBRG	0 to 7	Set a transfer rate	
UiMR ⁽¹⁾	SMD2 to SMD0	Set to "001b"	
	CKDIR	Set this bit to "0" for master mode or "1" for slave mode	
	IOPOL	Set to "0"	
UiC0	CLK1, CLK0	Select the count source for the UiBRG register	
	CRS	Invalid because the CRD bit = 1	
	TXEPT	Transmit register empty flag	
	CRD	Set to "1"	
	NCH	Select TXDi pin output format	
	CKPOL	Clock phases can be set in combination with the CKPH bit in the UiSMR3 register	
	UFORM	Set to "0"	
UiC1	TE	Set this bit to "1" to enable transmission	
	TI	Transmit buffer empty flag	
	RE	Set this bit to "1" to enable reception	
	RI	Reception complete flag	
	U2IRS ⁽²⁾	Select UART2 transmit interrupt cause	
	U2RRM ⁽²⁾ ,	Set to "0"	
	UiLCH, UiERE		
UiSMR	0 to 7	Set to "0"	
UiSMR2	0 to 7	Set to "0"	
UiSMR3	СКРН	Clock phases can be set in combination with the CKPOL bit in the UiC0 register	
	NODC	Set to "0"	
	0, 2, 4 to 7	Set to "0"	
UiSMR4	0 to 7	Set to "0"	
UCON	U0IRS, U1IRS	Select UART0 and UART1 transmit interrupt cause	
	U0RRM, U1RRM	Set to "0"	
	CLKMD0	Invalid because the CLKMD1 bit = 0	
	CLKMD1, RCSP, 7	Set to "0"	

i = 0 to 2

- 1. Not all register bits are described above. Set those bits to "0" when writing to the registers in Special Mode 2.
- 2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

14.1.4.1 Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the CKPH bit in the UiSMR3 register and the CKPOL bit in the UiC0 register.

Make sure the transfer clock polarity and phase are the same for the master and salves to be communicated. Figure 14.28 shows the transmission and reception timing in master (internal clock).

Figure 14.29 shows the transmission and reception timing (CKPH = 0) in slave (external clock).

Figure 14.30 shows the transmission and reception timing (CKPH = 1) in slave (external clock).

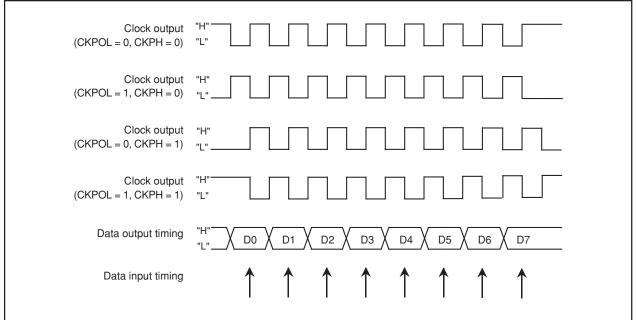


Figure 14.28 Transmission and Reception Timing in Master Mode (Internal Clock)

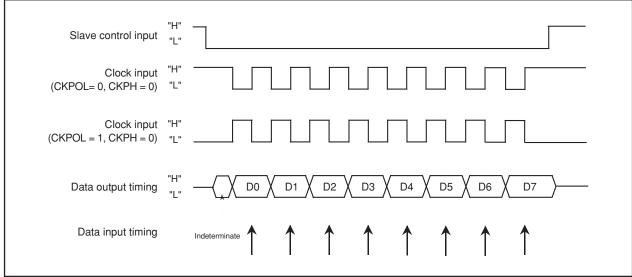


Figure 14.29 Transmission and Reception Timing (CKPH = 0) in Slave Mode (External Clock)

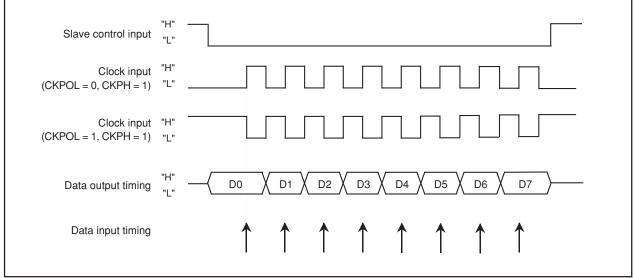


Figure 14.30 Transmission and Reception Timing (CKPH = 1) in Slave Mode (External Clock)

14.1.5 Special Mode 3 (IE Mode)

In this mode, one bit of IEBus is approximated with one byte of UART mode waveform.

Table 14.16 lists the registers used in IE mode and the register values set. Figure 14.31 shows the functions of bus collision detect function related bits.

If the TXDi pin (i = 0 to 2) output level and RXDi pin input level do not match, a UARTi bus collision detect interrupt request is generated.

Use the IFSR06 and IFSR07 bits in the IFSR0 register to enable the UART0/UART1 bus collision detect function.

Register	Bit	Function		
UiTB	0 to 8	Set transmission data		
UiRB ⁽¹⁾	0 to 8	Reception data can be read		
	OER,FER,PER,SUM	Error flag		
UiBRG	0 to 7	Set a transfer rate		
UiMR	SMD2 to SMD0	Set to "110b"		
	CKDIR	Select the internal clock or external clock		
	STPS	Set to "0"		
	PRY	Invalid because the PRYE bit = 0		
	PRYE	Set to "0"		
	IOPOL	Select the TXD/RXD input/output polarity		
UiC0	CLK1, CLK0	Select the count source for the UiBRG register		
	CRS	Invalid because the CRD bit = 1		
	TXEPT	Transmit register empty flag		
	CRD	Set to "1"		
	NCH	Select TXDi pin output mode		
	CKPOL	Set to "0"		
	UFORM	Set to "0"		
UiC1	TE	Set this bit to "1" to enable transmission		
	ТІ	Transmit buffer empty flag		
	RE	Set this bit to "1" to enable reception		
	RI	Reception complete flag		
	U2IRS ⁽²⁾	Select the source of UART2 transmit interrupt		
	U2RRM ⁽²⁾ ,	Set to "0"		
	UILCH, UIERE			
UiSMR	0 to 3, 7	Set to "0"		
	ABSCS	Select the sampling timing at which to detect a bus collision		
	ACSE	Set this bit to "1" to use the auto clear function of transmit enable bit		
	SSS	Select the transmit start condition		
UiSMR2	0 to 7	Set to "0"		
UiSMR3	0 to 7	Set to "0"		
UiSMR4	0 to 7	Set to "0"		
IFSR0	IFSR06, IFSR07	Set to "1"		
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt		
	U0RRM, U1RRM	Set to "0"		
	CLKMD0	Invalid because the CLKMD1 bit = 0		
	CLKMD1, RCSP, 7	Set to "0"		

Table 14.16	Registers to	Be Used and	Settings in IE Mode
-------------	---------------------	-------------	---------------------

i= 0 to 2

NOTES:

- 1. Not all register bits are described above. Set those bits to "0" when writing to the registers in IE mode.
- 2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Transfer clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TXDi	
RXDi	Input to TAjIN
Timer Aj	
2) ACSE Bit in HISM	If ABSCS bit = 1, bus collision is determined when timer Aj (one-shot timer mode) underflows. Timer Aj: timer A3 when UART0; timer A4 when UART1; timer A0 when UART2
Transfer clock	
TXDi	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
RXDi	
	· · · · · · · · · · · · · · · · · · ·
IR bit in UiBCNIC register	If the ACSE bit = 1 (automation clear when bus collision occu the TE bit is set to "0"
TE bit in UiC1 register	(transmission disabled) where the IR bit in the UiBCNIC register (unmatching detected).
	Register (transmit start condition select) erial I/O starts sending data one transfer clock cycle after the transmission enable condition is met.
Transfer clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TXDi	
	ission enable condition is met
Transm	ission enable condition is met
Transm	
Transm If SSS bit = 1, the s	serial I/O starts sending data at the rising edge (1) of RXDi
Transm If SSS bit = 1, the s CLKi	serial I/O starts sending data at the rising edge ⁽¹⁾ of RXDi

Figure 14.31 Bus Collision Detect Function-Related Bits

14.1.6 Special Mode 4 (SIM Mode) (UART2)

Based on UART mode, this is an SIM interface compatible mode. Direct and inverse formats can be implemented, and this mode allows to output a low from the TXD2 pin when a parity error is detected. Table 14.17 lists the specifications of SIM mode. Table 14.18 lists the registers used in the SIM mode and the register values set. Figure 14.32 shows the typical transmit/receive timing in SIM mode.

Item	Specification
Transfer data format	Direct format
	Inverse format
Transfer clock	• The CKDIR bit in the U2MR register = 0 (internal clock) : fi/ 16(n+1)
	fi = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the U2BRG register 00h to FFh
	 The CKDIR bit = 1 (external clock) : fEXT/16(n+1)
	fEXT: Input from CLK2 pin. n: Setting value of the U2BRG register 00h to FFh
Transmission start condition	Before transmission can start, the following requirements must be met
	 The TE bit in the U2C1 register = 1 (transmission enabled)
	 The TI bit in the U2C1 register = 0 (data present in the U2TB register)
Reception start condition	Before reception can start, the following requirements must be met
	 The RE bit in the U2C1 register = 1 (reception enabled)
	Start bit detection
Interrupt request	For transmission
generation timing (2)	When the serial I/O finished sending data from the U2TB transfer register (U2IRS bit = 1)
	For reception
	When transferring data from the UART2 receive register to the U2RB register (at
	completion of reception)
Error detection	Overrun error ⁽¹⁾
	This error occurs if the serial I/O started receiving the next data before reading the
	U2RB register and received the bit one before the last stop bit of the next data
	• Framing error ⁽³⁾
	This error occurs when the number of stop bits set is not detected
	• Parity error ⁽³⁾
	During reception, if a parity error is detected, parity error signal is output from the
	TXD2 pin.
	During transmission, a parity error is detected by the level of input to the RXD2 pin
	when a transmission interrupt occurs
	Error sum flag
	This flag is set to "1" when any of the overrun, framing, and parity errors is encountered

NOTES:

- 1. If an overrun error occurs, the value of the U2RB register will be indeterminate. The IR bit in the S2RIC register does not change.
- 2. A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to "1" (transmit is completed) and U2ERE bit to "1" (error signal output) after reset. Therefore, when using SIM mode, set the IR bit to "0" (interrupt not requested) after setting these bits.
- 3. The timing at which the framing error flag and the parity error flag are set is detected when data is transferred from the UARTi receive register to the UiRB register.

Table 14.18 Registers to Be Used and Settings in SIM Mode

Register	Bit	Function
U2TB ⁽¹⁾	0 to 7	Set transmission data
U2RB (1)	0 to 7	Reception data can be read
	OER,FER,PER,SUM	Error flag
U2BRG	0 to 7	Set a transfer rate
U2MR	SMD2 to SMD0	Set to "101b"
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Set this bit to "1" for direct format or "0" for inverse format
	PRYE	Set to "1"
	IOPOL	Set to "0"
U2C0	CLK1, CLK0	Select the count source for the U2BRG register
	CRS	Invalid because the CRD bit = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Set to "0"
	CKPOL	Set to "0"
	UFORM	Set this bit to "0" for direct format or "1" for inverse format
U2C1	TE	Set this bit to "1" to enable transmission
	ТІ	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS	Set to "1"
	U2RRM	Set to "0"
	U2LCH	Set this bit to "0" for direct format or "1" for inverse format
	U2ERE	Set to "1"
U2SMR ⁽¹⁾	0 to 3	Set to "0"
U2SMR2	0 to 7	Set to "0"
U2SMR3	0 to 7	Set to "0"
U2SMR4	0 to 7	Set to "0"

NOTE:

1. Not all register bits are described above. Set those bits to "0" when writing to the registers in SIM mode.

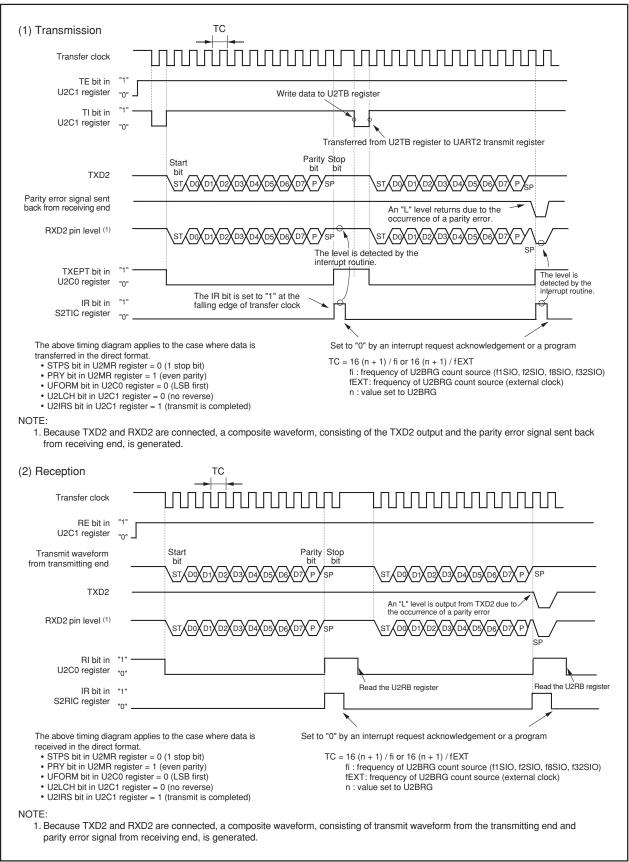


Figure 14.32 Transmit and Receive Timing in SIM Mode

Figure 14.33 shows the example of connecting the SIM interface. Connect TXD2 and RXD2 and apply pull-up.

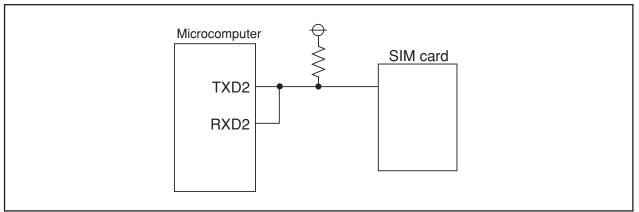


Figure 14.33 SIM Interface Connection

14.1.6.1 Parity Error Signal Output

The parity error signal is enabled by setting the U2ERE bit in the U2C1 register to "1".

The parity error signal is output when a parity error is detected while receiving data. This is achieved by pulling the TXD2 output low with the timing shown in Figure 14.32. If the R2RB register is read while outputting a parity error signal, the PER bit is set to "0" and at the same time the TXD2 output is returned high.

When transmitting, a transmission-finished interrupt request is generated at the falling edge of the transfer clock pulse that immediately follows the stop bit. Therefore, whether a parity signal has been returned can be determined by reading the port that shares the RXD2 pin in a transmission-finished interrupt service routine.

Transfer clock			
RXD2	"H" ST (D0 \ D1 \ D2 \ D3 \ D4 \ D5 \ D6	X D7 X P Y SP
TXD2	"H"	(NOTE 1)	
RI bit in U2C1 register	"1" "0" —————————————————————		
implemented.	gram applies to t	the case where the direct format is	ST: Start bit P: Even Parity SP: Stop bit
NOTE: 1: The output	ut of microcompu	uter is in the high-impedance state	•

Figure 14.34 shows the output timing of the parity error signal

14.1.6.2 Format

When direct format, set the PRY bit in the U2MR register to "1", the UFORM bit in the U2C0 register to "0" and the U2LCH bit in the U2C1 register to "0".

When inverse format, set the PRY bit to "0", UFORM bit to "1" and U2LCH bit to "1". Figure 14.35 shows the SIM interface format.

(1) Direct format "H" Transfer clock "H" TXD2 D0 01 D2 D3 (D4) D5 (D6 D7 Ρ "L" P : Even parity (2) Inverse format "H" Transfer ч I I clock "H' TXD2 D1 D0 D7 D6 D5 D4 X D3 (D2) Ρ "L" P: Odd parity

Figure 14.35 SIM Interface Format

14.2 SI/Oi (i = 3 to 6) ⁽¹⁾

SI/Oi is exclusive clock-synchronous serial I/Os.

Figure 14.36 shows the block diagram of SI/Oi, and Figures 14.37 and 14.38 show the SI/Oi-related registers. Table 14.19 lists the specifications of SI/Oi.

NOTE:

1.100-pin version supports SI/O3 and SI/O4.

128-pin version supports SI/O3, SI/O4, SI/O5 and SI/O6.

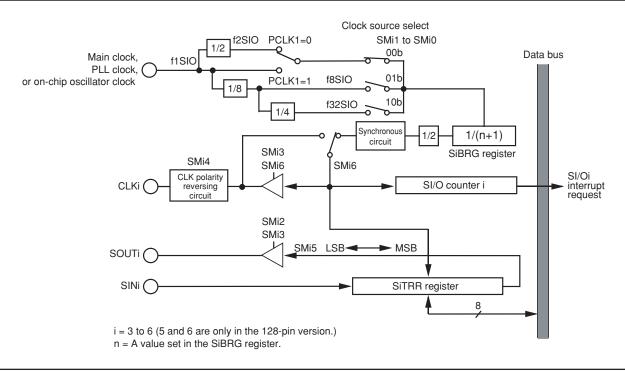


Figure 14.36 SI/Oi Block Diagram

CI/O: Operatural Deprivate		(1)		
SI/Oi Control Registe	r(l = 31)			
		-,	ldress After Reset 1E2h 0100000b	
b7 b6 b5 b4 b3 b2 b1 b0	_		1E6h 01000000b	
			1EAh 0100000b	
		S6C (6) 0	1D8h 0100000b	
	Bit Symbol	Bit Name	Description	RW
	SMi0	Internal Synchronous	b1 b0 0 0 : Selecting f1SIO or f2SIO 0 1 : Selecting f8SIO	RW
	SMi1	Clock Select Bit	1 0 : Selecting f32SIO 1 1 : Do not set a value	RW
	SMi2	SOUTi Output Disable Bit ⁽⁴⁾	0 : SOUTi output 1 : SOUTi output disabled (high-impedance)	RW
	SMi3	S I/Oi Port Select Bit (5)	0 : Input/output port 1 : SOUTi output, CLKi function	RW
	SMi4	CLK Polarity Select Bit	 0: Transmit data is output at falling edge of transfer clock and receive data is input at rising edge 1: Transmit data is output at rising edge of transfer clock and receive data is input at falling edge 	RW
	SMi5	Transfer Direction Select Bit	0 : LSB first 1 : MSB first	RW
	SMi6	Synchronous Clock	0 : External clock ⁽²⁾	RW

NOTES:

1. Make sure this register is written to by the next instruction after setting the PRC2 bit in the PRCR register to "1" (write enabled).

1 : Internal clock (3)

0 : "L" output 1 : "H" output

Effective when the SMi3 bit = 0

2. Set the SMi3 bit to "1" (SOUTi output, CLKi function) and the corresponding port direction bit to "0" (input mode).

3. Set the SMi3 bit to "1" (SOUTi output, CLKi function).

SMi7

4. When the SM32, SM52 or SM62 bit = 1, the corresponding pin is placed in the high-impedance state regardless of which functions of those pins are being used.

SI/O4 is effective when the SM43 bit = 1 (SOUT4 output, CLK4 function).

Select Bit

SOUTi Initial Value Set Bit

5. When using SI/O4, set the SM43 bit to "1" (SOUT4 output, CLK4 function) and the corresponding port direction bit for SOUT4 pin to "0" (input mode).

6. The S5C and S6C registers are only in the 128-pin version. When using the S5C and S6C registers, set these registers after setting the PU37 bit in the PUR3 register to "1" (Pins P11 to P14 are usable).

SI/Oi Bit Rate Generator (i = 3 to 6) (1) (2)

		Symbol	Address	After Re	eset	
b7	b0	S3BRG	01E3h	Indeterm	ninate	
D7	Ud	S4BRG	01E7h	Indeterm	inate	
		S5BRG ⁽³⁾	01EBh	Indeterm	inate	
		S6BRG ⁽³⁾	01D9h	Indeterm	ninate	
		Descri	otion		Setting Range	RW
		Assuming that set value = n, source by n + 1	SiBRG divides the	count	00h to FFh	wo

1. Write to this register while serial I/O is neither transmitting nor receiving.

2. Use the MOV instruction to write to this register.

3. The S5BRG and S6BRG registers are only in the 128-pin version.

SI/Oi Transmit/Receive Register (i = 3 to 6) (1) (2)

	Symbol	Address	After Reset	
b7 b0	S3TRR	01E0h	Indeterminate	
5/ 5/	S4TRR	01E4h	Indeterminate	
	S5TRR (3	³⁾ 01E8h	Indeterminate	
	S6TRR (3	³⁾ 01D6h	Indeterminate	
		Descripti	on	RW
			mit data to this register. data can be read by reading this register.	RW
NOTES:				<u> </u>

2. To receive data, set the corresponding port direction bit for SINi to "0" (input mode).

3. The S5TRR and S6TRR registers are only in the 128-pin version.

Figure 14.37 S3C to S6C Registers, S3BRG to S6BRG Registers, and S3TRR to S6TRR Registers

RENESAS

RW

14. Serial I/O

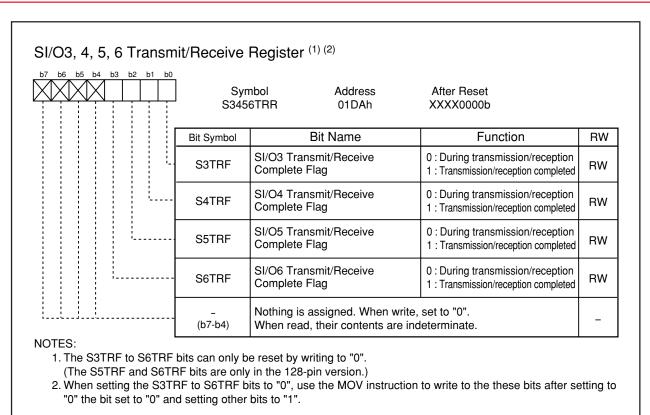


Figure 14.38 S3456TRR Register

ltem	Specification
Transfer Data Format	Transfer data length: 8 bits
Transfer clock	• SMi6 bit in SiC register = 1 (internal clock) : fj/ 2(n+1)
	fj = f1SIO, f8SIO, f32SIO. n = Setting value of SiBRG register 00h to FFh
	• SMi6 bit = 0 (external clock) : Input from CLKi pin ⁽¹⁾
Transmission/Reception	Before transmission/reception can start, the following requirements must be met
Start Condition	Write transmit data to the SiTRR register ^{(2) (3)}
Interrupt Request	When SMi4 bit in SiC register = 0
Generation Timing	The rising edge of the last transfer clock pulse ⁽⁴⁾
	• When SMi4 bit = 1
	The falling edge of the last transfer clock pulse ⁽⁴⁾
CLKi Pin Function	I/O port, transfer clock input, transfer clock output
SOUTi Pin Function	I/O port, transmit data output, high-impedance
SINi Pin Function	I/O port, receive data input
Select Function	LSB first or MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning
	with bit 7 can be selected
	 Function for setting an SOUTi initial value set function
	When the SMi6 bit in the SiC register = 0 (external clock), the SOUTi pin
	output level while not transmitting can be selected.
	CLK polarity selection
	Whether transmit data is output/input timing at the rising edge or falling edge of transfer clock can be selected.

Table 14.19 SI/Oi Specifications

i = 3 to 6 (5 and 6 are only in the 128-pin version.)

NOTES:

- 1. To set the SMi6 bit in the SiC register to "0" (external clock), follow the procedure described below.
 - If the SMi4 bit in the SiC register = 0, write transmit data to the SiTRR register while input on the CLKi pin is high. The same applies when rewriting the SMi7 bit in the SiC register.
 - If the SMi4 bit = 1, write transmit data to the SiTRR register while input on the CLKi pin is low. The same applies when rewriting the SMi7 bit.
 - Because shift operation continues as long as the transfer clock is supplied to the SI/Oi circuit, stop the transfer clock after supplying eight pulses. If the SMi6 bit = 1 (internal clock), the transfer clock automatically stops.
- 2. Unlike UART0 to UART2, SI/Oi is not separated between the transfer register and buffer. Therefore, do not write the next transmit data to the SiTRR register during transmission.
- 3. When the SMi6 bit = 1 (internal clock), SOUTi retains the last data for a 1/2 transfer clock period after completion of transfer and, thereafter, goes to a high-impedance state. However, if transmit data is written to the SiTRR register during this period, SOUTi immediately goes to a high-impedance state, with the data hold time thereby reduced.
- 4. When the SMi6 bit = 1 (internal clock), the transfer clock stops in the high state if the SMi4 bit = 0, or stops in the low state if the SMi4 bit = 1.

14.2.1 SI/Oi Operation Timing

Figure 14.39 shows the SI/Oi operation timing.

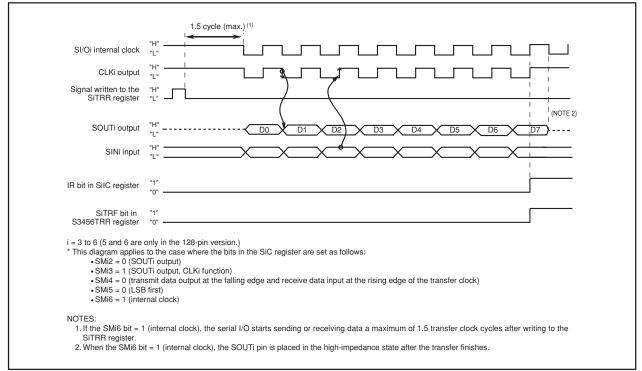


Figure 14.39 SI/Oi Operation Timing

14.2.2 CLK Polarity Selection

The SMi4 bit in the SiC register allows selection of the polarity of the transfer clock. Figure 14.40 shows the polarity of the transfer clock.

(1) When SMi4 bit in SiC register = 0
SINi D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7
(2) When SMi4 bit in SiC register = 1
SINi <u>D0 D1 D2 D3 D4 D5 D6 D7</u>
i = 3 to 6 (5 and 6 are only in the 128-pin version.) *This diagram applies to the case where the bits in the SiC register are set as follows: • SMi5 = 0 (LSB first) • SMi6 = 1 (internal clock)
 NOTES: 1. When the SMi6 bit = 1 (internal clock), a high level is output from the CLKi pin if not transferring data. 2. When the SMi6 bit = 1 (internal clock), a low level is output from the CLKi pin if not transferring data.

Figure 14.40 Polarity of Transfer Clock

14.2.3 Functions for Setting an SOUTi Initial Value

If the SMi6 bit in the SiC register = 0 (external clock), the SOUTi pin output can be fixed high or low when not transferring ⁽¹⁾. Figure 14.41 shows the timing chart for setting an SOUTi initial value and how to set it.

NOTE:

1. When CAN0 function is selected, P7_4, P7_5 and P8_0 can be used as input/output pins for SI/O4. When CAN0 function is not selected, P9_5, P9_6 and P9_7 can be used as input/output pis for SI/O4.

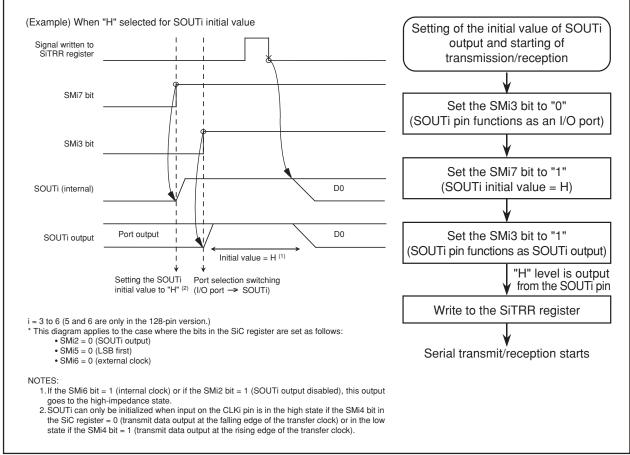


Figure 14.41 SOUTi's Initial Value Setting

15. A/D Converter

The microcomputer contains one A/D converter circuit based on 10-bit successive approximation method configured with a capacitive-coupling amplifier. The analog inputs share the pins with P10_0 to P10_7, P9_5, P9_6, P0_0 to P0_7, and P2_0 to P2_7. Similarly, ADTRG input shares the pin with P9_7. Therefore, when using these inputs, make sure the corresponding port direction bits are set to "0" (input mode). When not using the A/D converter, set the VCUT bit to "0" (VREF unconnected), so that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip. The A/D conversion result is stored in the ADI register's bits for ANi, AN0_i, and AN2_i pins (i = 0 to 7). Table 15.1 shows the performance of the A/D converter. Figure 15.1 shows the block diagram of the A/D converter, and Figures 15.2 and 15.3 show the A/D converter-related registers.

Item	Performance
Method of A/D Conversion	Successive approximation (capacitive coupling amplifier)
Analog Input Voltage (1)	0V to AVCC (VCC)
Operating Clock ϕ AD ⁽²⁾	fAD, divide-by-2 of fAD, divide-by-3 of fAD, divide-by-4 of fAD,
	divide-by-6 of fAD, divide-by-12 of fAD
Resolution	8 bits or 10 bits (selectable)
Integral Nonlinearity Error	When AVCC = VREF = 5 V
	With 8-bit resolution: ±2LSB
	With 10-bit resolution
	AN0 to AN7 input, AN0_0 to AN0_7 input and AN2_0 to AN2_7 input: ±3LSB
	ANEX0 and ANEX1 input (including mode in which external operation
	amp is selected): ±7LSB
	When AVCC = VREF = 3.3 V
	With 8-bit resolution: ±2LSB
	With 10-bit resolution
	AN0 to AN7 input, AN0_0 to AN0_7 input and AN2_0 to AN2_7 input: ±5LSB
	ANEX0 and ANEX1 input (including mode in which external operation
	amp is selected): ±7LSB
Operating Modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,
	and repeat sweep mode 1
Analog Input Pins	8 pins (AN0 to AN7) + 2 pins (ANEX0 and ANEX1) + 8 pins (AN0_0 to AN0_7)
	+ 8 pins (AN2_0 to AN2_7)
A/D Conversion	Software trigger
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	External trigger (retriggerable)
	Input on the ADTRG pin changes state from high to low after the ADST bit
	is set to "1" (A/D conversion starts)
Conversion Speed Per Pin	Without sample and hold function
	8-bit resolution: 49 φAD cycles, 10-bit resolution: 59 φAD cycles
	With sample and hold function
	8-bit resolution: 28 \u00e9AD cycles, 10-bit resolution: 33 \u00e9AD cycles

Table 15.1 A/D Converter Performance

NOTES:

1. Does not depend on use of sample and hold function.

2. ¢AD frequency must be 10 MHz or less.

When sample & hold function is disabled, ϕAD frequency must be 250 kHz or more. When sample & hold function is enabled, ϕAD frequency must be 1 MHz or more.

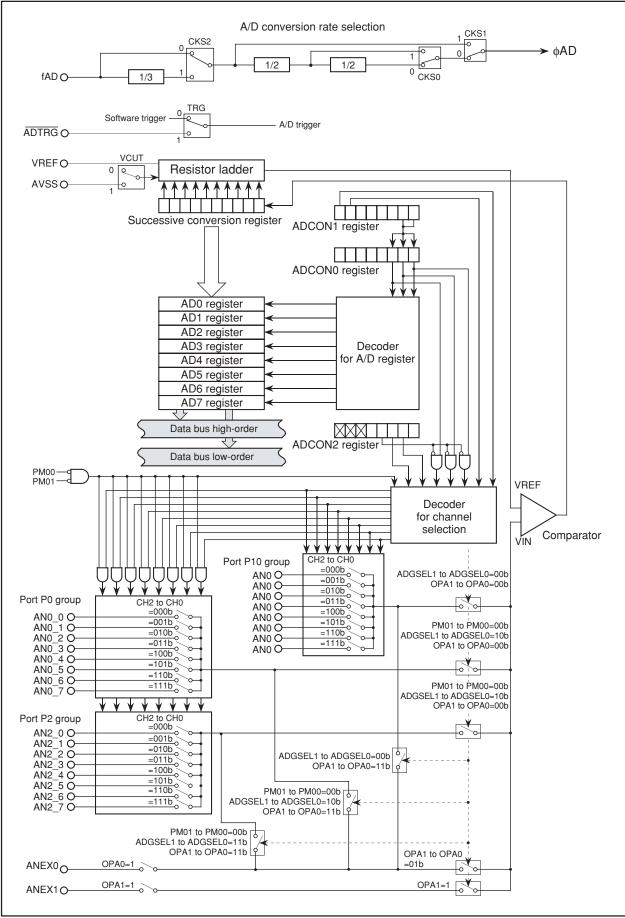


Figure 15.1 A/D Converter Block Diagram

b6 b5 b4 b3 b2 b1 b0	Symbol ADCONC		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	RV
	CH0			RV
	CH1	Analog Input Pin Select Bit	Function varies with each operation mode	RV
	CH2			RV
	MD0	A/D Operation Mode	0 0 : One-shot mode 0 1 : Repeat mode	RV
	MD1	Select Bit 0	1 0 : Single sweep mode 1 1 : Repeat sweep mode 0 or Repeat sweep mode 1	RV
	TRG	Trigger Select Bit	0 : Software trigger 1 : ADTRG trigger	RV
	ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
			Refer to NOTE 2 for ADCON2	
DTE: 1. If the ADCON0 registe D Control Register b6 b5 b4 b3 b2 b1 b0	1 ⁽¹⁾		After Reset	
1. If the ADCON0 registe	r is rewritten d	uring A/D conversion, the con Address	Register	
1. If the ADCON0 registe	r is rewritten de 1 ⁽¹⁾ Symbol	uring A/D conversion, the con Address	Register nversion result will be indeterminate After Reset	e.
1. If the ADCON0 registe	r is rewritten d 1 ⁽¹⁾ Symbol ADCON1	Address 03D7h Bit name	Register nversion result will be indeterminate After Reset 00h	e.
1. If the ADCON0 registe	r is rewritten d 1 ⁽¹⁾ Symbol ADCON1 Bit symbol	uring A/D conversion, the con Address 03D7h	Register nversion result will be indeterminate After Reset 00h Function	e. RV RV
1. If the ADCON0 registe	r is rewritten di 1 ⁽¹⁾ Symbol ADCON1 Bit symbol SCAN0	Address 03D7h Bit name	Register nversion result will be indeterminate After Reset 00h Function Function	e. RV RV
1. If the ADCON0 register	r is rewritten de 1 ⁽¹⁾ Symbol ADCON1 Bit symbol SCAN0 SCAN1	Address 03D7h Bit name A/D Sweep Pin Select Bit A/D Operation Mode	Register Inversion result will be indeterminated After Reset 00h Function Function Function varies with each operation mode 0 : Any mode other than repeat sweep mode 1	e. RV RV RV
1. If the ADCON0 register	r is rewritten de 1 ⁽¹⁾ Symbol ADCON1 Bit symbol SCAN0 SCAN1 MD2	Address 03D7h Bit name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1	Register Inversion result will be indeterminated After Reset 00h Function Function Function varies with each operation mode 0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 0 : 8-bit mode	e. RV RV RV RV
1. If the ADCON0 register	r is rewritten dr 1 ⁽¹⁾ Symbol ADCON1 Bit symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit	Register Inversion result will be indeterminated After Reset 00h Function Function Function varies with each operation mode 0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	e. RV RV RV RV RV RV
1. If the ADCON0 register	r is rewritten de 1 ⁽¹⁾ Symbol ADCON1 Bit symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit Frequency Select Bit 1	Register Inversion result will be indeterminated After Reset 00h Function Function varies with each operation mode 0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register 0 : VREF not connected	e. RV RV RV RV RV RV RV

starting A/D conversion.

Figure 15.2 ADCON0 Register and ADCON1 Register

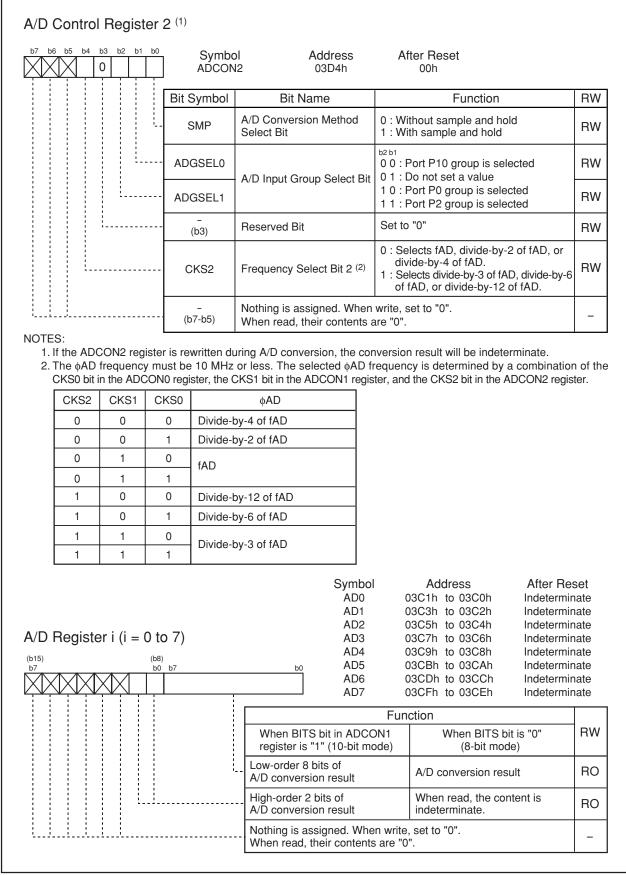


Figure 15.3 ADCON2 Register, and AD0 to AD7 Registers

15.1 Mode Description

15.1.1 One-shot Mode

In one-shot mode, analog voltage applied to a selected pin is A/D converted once. Table 15.2 lists the specifications of one-shot mode. Figure 15.4 shows the ADCON0 and ADCON1 registers in one-shot mode.

Item	Specification
Function	The CH2 to CH0 bits in the ADCON0 register, the ADGSEL1 to ADGSEL0
	bits in the ADCON2 register and the OPA1 to OPA0 bits in the ADCON1
	register select a pin Analog voltage applied to the pin is converted to a
	digital code once.
A/D Conversion	• When the TRG bit in the ADCON0 register is "0" (software trigger)
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to "1" (A/D conversion starts)
A/D Conversion	Completion of A/D conversion (If a software trigger is selected, the ADST
Stop Condition	bit is set to "0" (A/D conversion halted).)
	Set the ADST bit to "0"
Interrupt Request	Completion of A/D conversion
Generation Timing	
Analog Input Pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7,
	ANEX0 to ANEX1
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin
A/D Converter	

Table 15.2	One-shot Mode	Specifications
	one shot mout	opcomoutions

7 b6 b5 b4 b3 b2 0 0	2 b1 b0	Symbol ADCON0		After Reset 00000XXXb	
		Bit Symbol	Bit Name	Function	RV
		CH0		0 0 0 : AN0 is selected 0 0 1 : AN1 is selected 0 1 0 : AN2 is selected	RV
		CH1	Analog Input Pin Select Bit		RV
		CH2		1 1 0 : AN6 is selected 1 1 1 : AN7 is selected 1 1 1 : AN7 is selected ^{(2) (3)}	RV
	·	MD0	A/D Operation Mode	b4 b3	RV
		MD1	Select Bit 0	0 0 : One-shot mode ⁽³⁾	RV
		TRG	Trigger Select Bit	0 : <u>Softwar</u> e trigger 1 : ADTRG trigger	RV
		ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
		CKS0	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2 Register	RV
 2. AN0_0 to AN_7, bits in the ADC 3. After rewriting t 	, and AN ON2 reg the MD1	I2_0 to AN2_7 o gister to select to MD0 bits, s	can be used in same way as A the desired pin.	nversion result will be indeterminate. N0 to AN7. Use the ADGSEL1 to ADC again using another instruction.	
2. AN0_0 to AN_7, bits in the ADC 3. After rewriting t	, and AN ON2 reg the MD1	I2_0 to AN2_7 o gister to select to MD0 bits, s	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address	N0 to AN7. Use the ADGSEL1 to ADO	
2. AN0_0 to AN_7, bits in the ADC 3. After rewriting t /D Control Rec	, and AN ON2 reg the MD1 gister	I2_0 to AN2_7 of gister to select to MD0 bits, s 1 ⁽¹⁾ Symbol	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address	N0 to AN7. Use the ADGSEL1 to ADC again using another instruction. After Reset	GSEI
2. AN0_0 to AN_7, bits in the ADC 3. After rewriting t /D Control Rec	, and AN ON2 reg the MD1 gister	I2_0 to AN2_7 d gister to select to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name	N0 to AN7. Use the ADGSEL1 to AD0 again using another instruction. After Reset 00h Function	GSE
2. AN0_0 to AN_7, bits in the ADC 3. After rewriting t /D Control Rec	, and AN ON2 reg the MD1 gister	I2_0 to AN2_7 of gister to select to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h	N0 to AN7. Use the ADGSEL1 to AD0 again using another instruction. After Reset 00h	GSEI RV
2. AN0_0 to AN_7, bits in the ADC 3. After rewriting t /D Control Rec	, and AN ON2 reg the MD1 gister	I2_0 to AN2_7 of gister to select to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name	N0 to AN7. Use the ADGSEL1 to AD0 again using another instruction. After Reset 00h Function	GSE RV RV
2. AN0_0 to AN_7, bits in the ADC 3. After rewriting t /D Control Rec	, and AN ON2 reg the MD1 gister	I2_0 to AN2_7 of gister to select to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode	N0 to AN7. Use the ADGSEL1 to AD0 again using another instruction. After Reset 00h Function Invalid in one-shot mode Set to "0" when one-shot mode	RV RV RV
2. AN0_0 to AN_7, bits in the ADC 3. After rewriting t /D Control Rec	, and AN ON2 reg the MD1 gister	I2_0 to AN2_7 of gister to select to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1	N0 to AN7. Use the ADGSEL1 to AD0 again using another instruction. After Reset 00h Function Invalid in one-shot mode Set to "0" when one-shot mode is selected 0 : 8-bit mode	RV RV RV RV
2. AN0_0 to AN_7, bits in the ADC 3. After rewriting t /D Control Rec	, and AN ON2 reg the MD1 gister	I2_0 to AN2_7 of gister to select to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit	N0 to AN7. Use the ADGSEL1 to AD0 again using another instruction. After Reset 00h Function Invalid in one-shot mode Set to "0" when one-shot mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	
2. AN0_0 to AN_7, bits in the ADC 3. After rewriting t /D Control Rec	, and AN ON2 reg the MD1 gister	I2_0 to AN2_7 of gister to select to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit Frequency Select Bit 1	N0 to AN7. Use the ADGSEL1 to AD0 again using another instruction. After Reset 00h Function Invalid in one-shot mode Set to "0" when one-shot mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	RV RV RV RV

1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

2. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μs or more before starting A/D conversion.

Figure 15.4 ADCON0 Register and ADCON1 Register in One-shot Mode

15.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 15.3 lists the specifications of repeat mode. Figure 15.5 shows the ADCON0 and ADCON1 registers in repeat mode.

Item	Specification
Function	The CH2 to CH0 bits in the ADCON0 register, the ADGSEL1 to ADGSEL0
	bits in the ADCON2 register and the OPA1 to OPA0 bits in the ADCON1
	register select a pin. Analog voltage applied to this pin is repeatedly
	converted to a digital code.
A/D Conversion	When the TRG bit in the ADCON0 register is "0" (software trigger)
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to "1" (A/D conversion starts)
A/D Conversion	Set the ADST bit to "0" (A/D conversion halted)
Stop Condition	
Interrupt Request	None generated
Generation Timing	
Analog Input Pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7,
	ANEX0 to ANEX1
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin
A/D Converter	

Table 15.3 Repeat Mode Specifications

	Symbol ADCONC		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	RV
	СН0		0 0 0 : AN0 is selected 0 0 1 : AN1 is selected	RV
· · · · · · · · · · · · · · · · · · ·	CH1	Analog Input Pin Select Bit	1 0 0 : AN4 is selected	RV
	CH2		1 0 1 : AN5 is selected 1 1 0 : AN6 is selected 1 1 1 : AN7 is selected ^{(2) (3)}	RV
	MD0	A/D Operation Mode	b4 b3	RV
	MD1	Select Bit 0	0 1 : Repeat mode ⁽³⁾	RV
	TRG	Trigger Select Bit	0 : <u>Software</u> trigger 1 : ADTRG trigger	RV
	ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
	CKS0	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2 Register	RV
 AN0_0 to AN_7, and A bits in the ADCON2 re After rewriting the MD 	N2_0 to AN2_7 o gister to select 1 to MD0 bits, s	can be used in same way as A the desired pin.	nversion result will be indeterminate. N0 to AN7. Use the ADGSEL1 to ADC again using another instruction.	
2. AN0_0 to AN_7, and A bits in the ADCON2 re	N2_0 to AN2_7 d egister to select 1 to MD0 bits, s 1 ⁽¹⁾	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address	N0 to AN7. Use the ADGSEL1 to ADO	
2. AN0_0 to AN_7, and A bits in the ADCON2 re 3. After rewriting the MD D Control Register	N2_0 to AN2_7 d egister to select 1 to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h	N0 to AN7. Use the ADGSEL1 to ADC again using another instruction. After Reset 00h	GSEI
2. AN0_0 to AN_7, and A bits in the ADCON2 re 3. After rewriting the MD D Control Register	N2_0 to AN2_7 d gister to select 1 to MD0 bits, s 1 ⁽¹⁾ Symbol	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address	N0 to AN7. Use the ADGSEL1 to ADC again using another instruction. After Reset	GSE
2. AN0_0 to AN_7, and A bits in the ADCON2 re 3. After rewriting the MD D Control Register	N2_0 to AN2_7 of egister to select 1 to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h	N0 to AN7. Use the ADGSEL1 to ADG again using another instruction. After Reset 00h	GSEI RV RV
 AN0_0 to AN_7, and A bits in the ADCON2 re After rewriting the MD D Control Register b6 b5 b4 b3 b2 b1 b0 	N2_0 to AN2_7 of egister to select 1 to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name A/D Sweep Pin Select Bit	N0 to AN7. Use the ADGSEL1 to ADG again using another instruction. After Reset 00h Function Invalid in repeat mode	RV RV
2. AN0_0 to AN_7, and A bits in the ADCON2 re 3. After rewriting the MD D Control Register	N2_0 to AN2_7 of egister to select 1 to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name	N0 to AN7. Use the ADGSEL1 to ADG again using another instruction. After Reset 00h Function	RV RV
2. AN0_0 to AN_7, and A bits in the ADCON2 re 3. After rewriting the MD D Control Register	N2_0 to AN2_7 of egister to select 1 to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode	N0 to AN7. Use the ADGSEL1 to AD0 again using another instruction. After Reset 00h Function Invalid in repeat mode Set to "0" when repeat mode is	RV RV RV
2. AN0_0 to AN_7, and A bits in the ADCON2 re 3. After rewriting the MD D Control Register	N2_0 to AN2_7 of egister to select 1 to MD0 bits, s 1 ⁽¹⁾ Bit Symbol SCAN0 SCAN1 MD2	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1	N0 to AN7. Use the ADGSEL1 to AD0 again using another instruction. After Reset 00h Function Invalid in repeat mode Set to "0" when repeat mode is selected 0 : 8-bit mode	RV RV RV RV
 2. AN0_0 to AN_7, and A bits in the ADCON2 re 3. After rewriting the MD 7 D Control Register 7 b6 b5 b4 b3 b2 b1 b0 	N2_0 to AN2_7 of egister to select 1 to MD0 bits, s 1 ⁽¹⁾ Bit Symbol SCAN0 SCAN1 MD2 BITS	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit	N0 to AN7. Use the ADGSEL1 to ADC again using another instruction. After Reset 00h Function Invalid in repeat mode Set to "0" when repeat mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	
 2. AN0_0 to AN_7, and A bits in the ADCON2 re 3. After rewriting the MD 7 D Control Register 7 b6 b5 b4 b3 b2 b1 b0 	N2_0 to AN2_7 of origister to select 1 to MD0 bits, s 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	can be used in same way as A the desired pin. et the CH2 to CH0 bits over Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit Frequency Select Bit 1	N0 to AN7. Use the ADGSEL1 to ADC again using another instruction. After Reset 00h Function Invalid in repeat mode Set to "0" when repeat mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	RV RV RV RV

NOTES:

1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

2. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μs or more before starting A/D conversion.

Figure 15.5 ADCON0 Register and ADCON1 Register in Repeat Mode

15.1.3 Single Sweep Mode

In single sweep mode, analog voltage that is applied to selected pins is converted one-by-one to a digital code. Table 15.4 lists the specifications of single sweep mode. Figure 15.6 shows the ADCON0 and ADCON1 registers in single sweep mode.

Item	Specification
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and the ADGSEL1 to
	ADGSEL0 bits in the ADCON2 register select pins. Analog voltage applied
	to this pins is converted one-by-one to a digital code.
A/D Conversion	• When the TRG bit in the ADCON0 register is "0" (software trigger)
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to "1" (A/D conversion starts)
A/D Conversion	Completion of A/D conversion (If a software trigger is selected, the ADST
Stop Condition	bit is set to "0" (A/D conversion halted).)
	Set the ADST bit to "0"
Interrupt Request	Completion of A/D conversion
Generation Timing	
Analog Input Pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins),
	AN0 to AN7 (8 pins) ⁽¹⁾
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin
A/D Converter	
NOTE:	

Table 15.4	Single	Sweep	Mode	Specifications
------------	--------	-------	------	----------------

1. AN0_0 to AN0_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

7 b6 b5 b4 b3 b2 b1 b0	ر Symbol	Address	After Reset	
	ADCONC		00000XXXb	
	Bit Symbol	Bit Name	Function	R۱
	CH0			R۱
	CH1	Analog Input Pin Select Bit	Invalid in single sweep mode	R۱
	CH2			R۱
	MD0	A/D Operation Mode	b4 b3	R١
	MD1	Select Bit 0	1 0 : Single sweep mode	R١
,	TRG	Trigger Select Bit	0 : Software trigger 1 : ADTRG trigger	R٧
	ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	R۱
	CKS0	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2 Register	R۱
D Control Register	1 ⁽¹⁾ J Symbol	Address	oversion result will be indeterminate.	
1. If the ADCON0 registe D Control Register	1 ⁽¹⁾	Address		
1. If the ADCON0 registe D Control Register	1 ⁽¹⁾ J Symbol	Address	After Reset	i
1. If the ADCON0 registe D Control Register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h Bit Name	After Reset 00h Function When single sweep mode is selected	R
1. If the ADCON0 registe D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	Address 03D7h	After Reset 00h Function When single sweep mode is selected	RI
1. If the ADCON0 registe D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	Address 03D7h Bit Name	After Reset 00h Function When single sweep mode is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins)	R\ R\ R\
1. If the ADCON0 registe D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode	After Reset 00h Function When single sweep mode is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to "0" when single sweep mode	R\ R\ R\
1. If the ADCON0 registe D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1	After Reset 00h Function When single sweep mode is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to "0" when single sweep mode is selected 0 : 8-bit mode	
1. If the ADCON0 registe D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit	After Reset 00h Function When single sweep mode is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to "0" when single sweep mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	
1. If the ADCON0 registe D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit Frequency Select Bit 1	After Reset 00h Function When single sweep mode is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to "0" when single sweep mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	

2. ANO_0 to AN_7, and AN2_0 to AN2_7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.

3. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μs or more before starting A/D conversion.

Figure 15.6 ADCON0 Register and ADCON1 Register in Single Sweep Mode

15.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltage applied to selected pins is repeatedly converted to a digital code. Table 15.5 lists the specifications of repeat sweep mode 0. Figure 15.7 shows the ADCON0 and ADCON1 registers in repeat sweep mode 0.

Item	Specification
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and the ADGSEL1 to
	ADGSEL0 bits in the ADCON2 register select pins. Analog voltage applied
	to the pins is repeatedly converted to a digital code.
A/D Conversion	• When the TRG bit in the ADCON0 register is "0" (software trigger)
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to "1" (A/D conversion starts)
A/D Conversion	Set the ADST bit to "0" (A/D conversion halted)
Stop Condition	
Interrupt Request	None generated
Generation Timing	
Analog Input Pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins),
	AN0 to AN7 (8 pins) ⁽¹⁾
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin
A/D Converter	
NOTE:	

NOTE:

1. AN0_0 to AN0_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

b6 b5 b4 b3 b2 b1 b0 1<	Symbol		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	RW
	CH0			RW
	CH1	Analog Input Pin Select Bit	Invalid in repeat sweep mode 0	R٧
	CH2			RW
	MD0	A/D Operation Mode	b4 b3	RW
	MD1	Select Bit 0	1 1 : Repeat sweep mode 0 or Repeat sweep mode 1	RW
	TRG	Trigger Select Bit	0 : Software trigger 1 : ADTRG trigger	RW
	ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
	CKS0	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2 Register	RW
Control Register	1 ⁽¹⁾ 1 Symbol	Address	After reset	
Control Register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h	After reset 00h	
Control Register	1 ⁽¹⁾ 1 Symbol	Address	After reset 00h Function	RW
Control Register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h Bit Name	After reset 00h Function When repeat sweep mode 0 is selected bib0 0 0 : AN0, AN1 (2 pins)	
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	Address 03D7h	After reset 00h Function When repeat sweep mode 0 is selected	RW
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	Address 03D7h Bit Name	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins)	RW
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to "0" when repeat sweep	RW RW
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1	After reset 00h Function When repeat sweep mode 0 is selected bib0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to "0" when repeat sweep mode 0 is selected 0 : 8-bit mode	RW RW RW
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to "0" when repeat sweep mode 0 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	RW RW RW RW RW
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit Frequency Select Bit 1	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to "0" when repeat sweep mode 0 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	RW RW RW RW

ANO_0 to AN_7, and AN2_0 to AN2_7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.

3. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μs or more before starting A/D conversion.

15.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltage selectively applied to all pins is repeatedly converted to a digital code. Table 15.6 lists the specifications of repeat sweep mode 1. Figure 15.8 shows the ADCON0 and ADCON1 registers in repeat sweep mode 1.

Item	Specification
Function	The input voltages on all pins selected by the ADGSEL1 to ADGSEL0 bits
	in the ADCON2 register are A/D converted repeatedly, with priority given
	to pins selected by the SCAN1 to SCAN0 bits in the ADCON1 register and
	ADGSEL1 to ADGSEL0 bits.
	Example : If AN0 selected, input voltages are A/D converted in order of
	AN0 \rightarrow AN1 \rightarrow AN0 \rightarrow AN2 \rightarrow AN0 \rightarrow AN3, and so on.
A/D Conversion	When the TRG bit in the ADCON0 register is "0" (software trigger)
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	 When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to "1" (A/D conversion starts)
A/D Conversion	Set the ADST bit to "0" (A/D conversion halted)
Stop Condition	
Interrupt Request	None generated
Generation Timing	
Analog Input Pins to be Given	Select from AN0 (1 pin), AN0 to AN1 (2 pins), AN0 to AN2 (3 pins),
Priority when A/D Converted	AN0 to AN3 (4 pins) ⁽¹⁾
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin
A/D Converter	

Table 15.6	Repeat	Sweep	Mode 1	Specifications
------------	--------	-------	--------	----------------

NOTE:

1. AN0_0 to AN0_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

b6 b5 b4 b3 b2 b1 b0	Symbol ADCONC		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	R۱
	CH0			R۱
	CH1	Analog Input Pin Select Bit	Invalid in repeat sweep mode 1	R
· · · · · · · · · · · · · · · · · · ·	CH2			R
	MD0	A/D Operation Mode	b4 b3	R
	MD1	Select Bit 0	1 1 : Repeat sweep mode 0 or Repeat sweep mode 1	R
	TRG	Trigger Select Bit	0 : <u>Softwa</u> re trigger 1 : ADTRG trigger	R۱
	ADST	A/D Conversion Start Flag	0 : A/D conversion disabled 1 : A/D conversion started	R۱
	CKS0	Frequency Select Bit 0	Refer to NOTE 2 for ADCON2 Register	R۱
Control Register	1 ⁽¹⁾ J Symbol	Address	nversion result will be indeterminate. After Reset	
) Control Register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h	After Reset 00h	1
Control Register	1 ⁽¹⁾ J Symbol	Address	After Reset 00h Function	R\
Control Register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h Bit Name	After Reset 00h Function When repeat sweep mode 1 is selected	R\
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	Address 03D7h	After Reset 00h Function When repeat sweep mode 1 is selected	R\
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	Address 03D7h Bit Name	After Reset 00h Function When repeat sweep mode 1 is selected b1 b0 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins)	RI
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode	After Reset 00h Function When repeat sweep mode 1 is selected b1 b0 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to "1" when repeat sweep	RI RI RI
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1	After Reset 00h Function When repeat sweep mode 1 is selected bib0 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to "1" when repeat sweep mode 1 is selected 0 : 8-bit mode	RI RI RI RI
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit	After Reset 00h Function When repeat sweep mode 1 is selected b1 b0 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to "1" when repeat sweep mode 1 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	R\
Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit Name A/D Sweep Pin Select Bit A/D Operation Mode Select Bit 1 8/10-Bit Mode Select Bit Frequency Select Bit 1	After Reset 00h Function When repeat sweep mode 1 is selected b1 b0 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to "1" when repeat sweep mode 1 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	R\ R\

2. AN0_0 to AN_7, and AN2_0 to AN2_7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.

3. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μs or more before starting A/D conversion.

15.2 Function

15.2.1 Resolution Select Function

The desired resolution can be selected using the BITS bit in the ADCON1 register. If the BITS bit is set to "1" (10-bit conversion accuracy), the A/D conversion result is stored in the bit 0 to bit 9 in the ADI register (i = 0 to 7). If the BITS bit is set to "0" (8-bit conversion accuracy), the A/D conversion result is stored in the bit 0 to bit 7 in the ADI register.

15.2.2 Sample and Hold

If the SMP bit in the ADCON2 register is set to "1" (with sample-and-hold), the conversion speed per pin is increased to 28 ϕ AD cycles for 8-bit resolution or 33 ϕ AD cycles for 10-bit resolution. Sample-and-hold is effective in all operation modes. Select whether or not to use the sample and hold function before starting A/D conversion.

15.2.3 Extended Analog Input Pins

In one-shot and repeat modes, the ANEX0 and ANEX1 pins can be used as analog input pins. Use the OPA1 to OPA0 bits in the ADCON1 register to select whether or not use ANEX0 and ANEX1. The A/D conversion results of ANEX0 and ANEX1 inputs are stored in the AD0 and AD1 registers, respectively.

15.2.4 External Operation Amplifier (Op-Amp) Connection Mode

Multiple analog inputs can be amplified using a single external op-amp via the ANXE0 and ANEX1 pins. Set the OPA1 to OPA0 bits in the ADCON1 register to "11b" (external op-amp connection mode). The inputs from ANi (i = 0 to 7) ⁽¹⁾ are output from the ANEX0 pin. Amplify this output with an external op-amp before sending it back to the ANEX1 pin. The A/D conversion result is stored in the corresponding ADi register. The A/D conversion speed depends on the response characteristics of the external op-amp. Figure 15.9 shows an example of how to connect the pins in external operation amp.

NOTE:

1. AN0_i and AN2_i can be used the same as ANi.

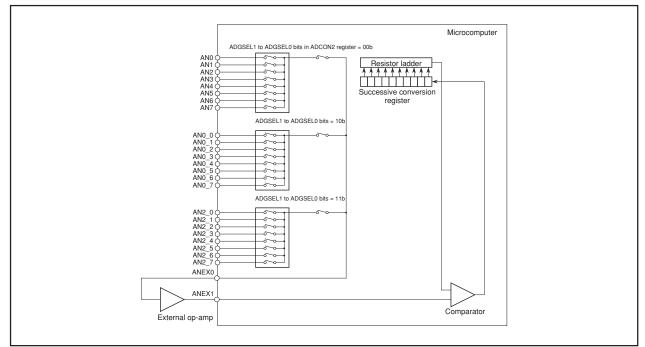


Figure 15.9 External Op-Amp Connection

15.2.5 Current Consumption Reducing Function

When not using the A/D converter, its resistor ladder and reference voltage input pin (VREF) can be separated using the VCUT bit in the ADCON1 register. When separated, no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

To use the A/D converter, set the VCUT bit to "1" (VREF connected) and then set the ADST bit in the ADCON0 register to "1" (A/D conversion start). The VCUT and ADST bits cannot be set to "1" at the same time. Nor can the VCUT bit be set to "0" (VREF unconnected) during A/D conversion.

Note that this does not affect VREF for the D/A converter (irrelevant).

15.2.6 Output Impedance of Sensor under A/D Conversion

To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 15.10 has to be completed within a specified period of time. T (sampling time) as the specified time. Let output impedance of sensor equivalent circuit be R0, microcomputer's internal resistance be R, precision (error) of the A/D converter be X, and the A/D converter's resolution be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

VC is generally VC = VIN {1 - e
$$-\frac{1}{C(R0 + R)}t$$
}
And when t = T, VC=VIN $-\frac{X}{Y}$ VIN=VIN(1 $-\frac{X}{Y})$
 $e^{-\frac{1}{C(R0 + R)}T} = \frac{X}{Y}$
 $-\frac{1}{C(R0 + R)}T = \ln \frac{X}{Y}$
Hence, R0 = $-\frac{T}{C \cdot \ln \frac{X}{Y}} - R$

Figure 15.10 shows analog input pin and external sensor equivalent circuit.

When the difference between VIN and VC becomes 0.1LSB, we find impedance R0 when voltage between pins VC changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A/D precision drop due to insufficient capacitor charge is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB. When f(XIN) = 10 MHz, T = 0.3 µs in the A/D conversion mode with sample & hold. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

$$T$$
 = 0.3 $\mu s,\,R$ = 7.8 $k\Omega,\,C$ = 1.5 pF, X = 0.1, and Y = 1024. Hence,

$$R0 = -\frac{0.3 \times 10^{-6}}{1.5 \times 10^{-12} \cdot \ln \frac{0.1}{1024}} -7.8 \times 10^{3} \doteqdot 13.9 \times 10^{3}$$

Thus, the allowable output impedance of the sensor circuit capable of thoroughly driving the A/D converter turns out to be approximately 13.9 k Ω .

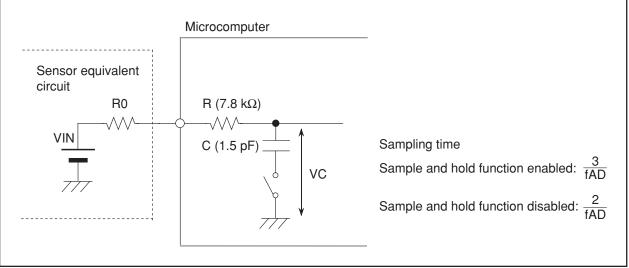


Figure 15.10 Analog Input Pin and External Sensor Equivalent Circuit

16. D/A Converter

This is an 8-bit, R-2R type D/A converter. These are two independent D/A converters.

D/A conversion is performed by writing to the DAi register (i = 0, 1). To output the result of conversion, set the DAiE bit in the DACON register to "1" (output enabled). Before D/A conversion can be used, the corresponding port direction bit must be set to "0" (input mode). Setting the DAiE bit to "1" removes a pull-up from the corresponding port.

Output analog voltage (V) is determined by a set value (n : decimal) in the DAi register.

 $V = VREF \times n/256$ (n = 0 to 255) VREF : reference voltage

Table 16.1 lists the performance of the D/A converter. Figure 16.1 shows the block diagram of the D/A converter. Figure 16.2 shows the D/A converter-related registers. Figure 16.3 shows the D/A converter equivalent circuit.

Item	Performance
D/A conversion Method	R-2R method
Resolution	8 bits
Analog Output Pin	2 (DA0 and DA1)

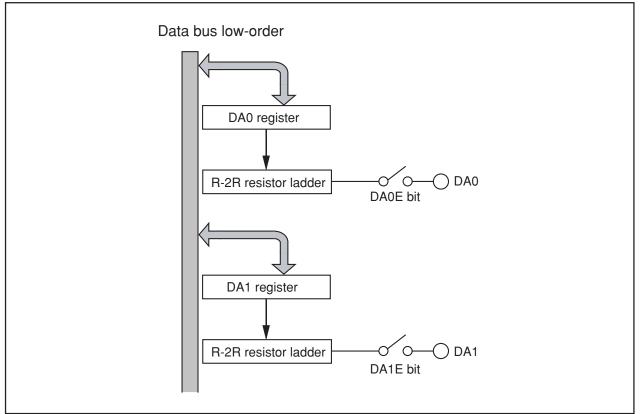


Figure 16.1 D/A Converter Block Diagram

b2 b1 b0

DA0E

DA1E

(b7-b2)

b3

0 : Output disabled

1 : Output enabled 0 : Output disabled

1 : Output enabled

RW

RW

NOTE:

b6 b5 h4

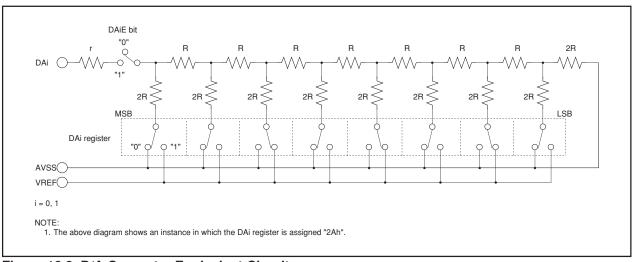
1. When not using the D/A converter, set the DAiE bit (i = 0, 1) to "0" (output disabled) to reduce the unnecessary current consumption in the chip and set the DAi register to "00h" to prevent current from flowing into the R-2R resistor ladder.

When read, their contents are "0".

Nothing is assigned. When write, set to "0".

D/A0 Output Enable Bit

D/A1 Output Enable Bit


D/A Register i (i = 0, 1) $^{(1)}$

b7	b0	Symbol DA0 DA1	Address 03D8h 03DAh	After Reset 00h 00h	
		Function			RW
		Output value of D/A conversion			RW

NOTE:

1. When not using the D/A converter, set the DAiE bit (i = 0, 1) to "0" (output disabled) to reduce the unnecessary current consumption in the chip and set the DAi register to "00h" to prevent current from flowing into the R-2R resistor ladder.

Figure 16.2 DACON Register, DA0 and DA1 Registers

17. CRC Calculation

The Cyclic Redundancy Check (CRC) operation detects an error in data blocks. The microcomputer uses a generator polynomial of CRC-CCITT ($X^{16} + X^{12} + X^5 + 1$) to generate CRC code.

The CRC code consists of 16 bits which are generated for each data block in given length, separated in 8-bit unit. After the initial value is set in the CRCD register, the CRC code is set in that register each time one byte of data is written to the CRCIN register. CRC code generation for one-byte data is finished in two cycles. Figure 17.1 shows the block diagram of the CRC circuit. Figure 17.2 shows the CRC-related registers.

Figure 17.3 shows the calculation example using the CRC operation.

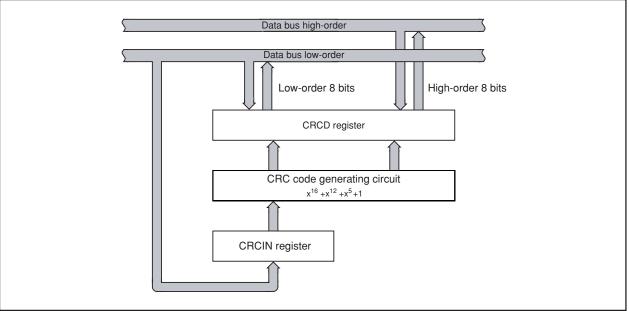
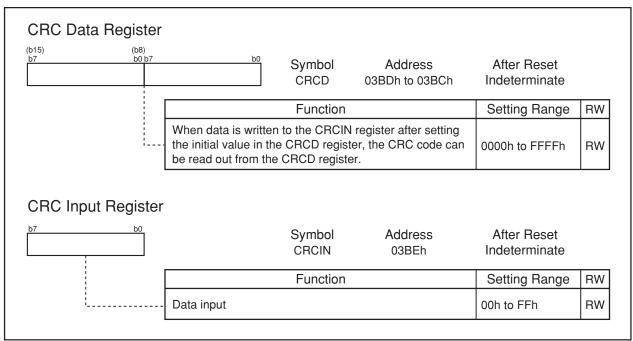



Figure 17.1 CRC Circuit Block Diagram

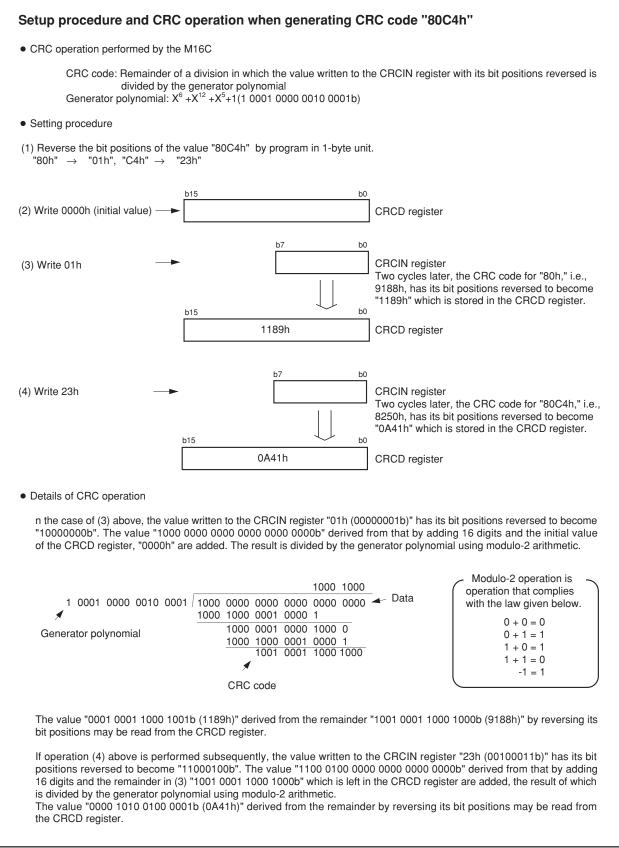


Figure 17.3 CRC Calculation

18. CAN Module

The CAN (Controller Area Network) module for the M16C/6N Group (M16C/6NL, M16C/6NN) of microcomputers is a communication controller implementing the CAN 2.0B protocol. The M16C/6N Group (M16C/6NL, M16C/6NN) contains one CAN module which can transmit and receive messages in both standard (11-bit) ID and extended (29-bit) ID formats.

Figure 18.1 shows a block diagram of the CAN module.

External CAN bus driver and receiver are required.

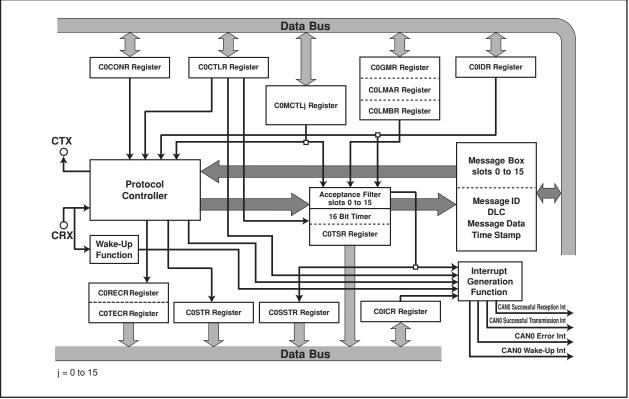


Figure 18.1 CAN Module Block Diagram

CTX/CRX:	CAN I/O pins.
Protocol controller:	This controller handles the bus arbitration and the CAN protocol services, i.e. bit timing, stuffing, error status etc.
Message box:	This memory block consists of 16 slots that can be configured either as transmitter or receiver. Each slot contains an individual ID, data length code, a data field (8 bytes) and a time stamp.
Acceptance filter:	This block performs filtering operation for received messages. For the filtering operation, the C0GMR register, the C0LMAR register, or the C0LMBR register is used.
16 bit timer:	Used for the time stamp function. When the received message is stored in the message memory, the timer value is stored as a time stamp.
Wake-up function: Interrupt generation function	CAN0 wake-up interrupt request is generated by a message from the CAN bus.The interrupt requests are generated by the CAN module. CAN0 successful reception interrupt, CAN0 successful transmission interrupt, CAN0 error interrupt and CAN0 wake-up interrupt.

18.1 CAN Module-Related Registers

The CAN0 module has the following registers.

18.1.1 CAN Message Box

A CAN module is equipped with 16 slots (16 bytes or 8 words each). Slots 14 and 15 can be used as Basic CAN.

- Priority of the slots: The smaller the number of the slot, the higher the priority, in both transmission and reception.
- A program can define whether a slot is defined as transmitter or receiver.

18.1.2 Acceptance Mask Registers

A CAN module is equipped with 3 masks for the acceptance filter.

- CAN0 global mask register (C0GMR register: 6 bytes)
 Configuration of the masking condition for acceptance filtering processing to slots 0 to 13
- CAN0 local mask A register (C0LMAR register: 6 bytes) Configuration of the masking condition for acceptance filtering processing to slot 14
- CAN0 local mask B register (C0LMBR register: 6 bytes) Configuration of the masking condition for acceptance filtering processing to slot 15

18.1.3 CAN SFR Registers

- CAN0 message control register j (j = 0 to 15) (C0MCTLj register: 8 bits \times 16) Control of transmission and reception of a corresponding slot
- CANi control register (i = 0, 1) (CiCTLR register: 16 bits) Control of the CAN protocol
- CAN0 status register (C0STR register: 16 bits) Indication of the protocol status
- CAN0 slot status register (C0SSTR register: 16 bits) Indication of the status of contents of each slot
- CAN0 interrupt control register (C0ICR register: 16 bits) Selection of "interrupt enabled or disabled" for each slot
- CAN0 extended ID register (C0IDR register: 16 bits) Selection of ID format (standard or extended) for each slot
- CAN0 configuration register (C0CONR register: 16 bits) Configuration of the bus timing
- CAN0 receive error count register (C0RECR register: 8 bits) Indication of the error status of the CAN module in reception: the counter value is incremented or decremented according to the error occurrence.
- CAN0 transmit error count register (C0TECR register: 8 bits) Indication of the error status of the CAN module in transmission: the counter value is incremented or decremented according to the error occurrence.
- CAN0 time stamp register (C0TSR register: 16 bits) Indication of the value of the time stamp counter
- CAN0 acceptance filter support register (C0AFS register: 16 bits)
 Decoding the received ID for use by the acceptance filter support unit

Explanation of each register is given below.

18.2 CAN0 Message Box

Table 18.1 shows the memory mapping of the CAN0 message box.

It is possible to access to the message box in byte or word.

Mapping of the message contents differs from byte access to word access. Byte access or word access can be selected by the MsgOrder bit of the COCTLR register.

Table 18.1	Memory	Mapping	of CAN0	Message Box
------------	--------	---------	---------	-------------

	Message Content (Memory Mapping)		
Address	Byte access (8 bits)	Word access (16 bits)	
0060h + n • 16 + 0	SID10 to SID6	SID5 to SID0	
0060h + n • 16 + 1	SID5 to SID0	SID10 to SID6	
0060h + n • 16 + 2	EID17 to EID14	EID13 to EID6	
0060h + n • 16 + 3	EID13 to EID6	EID17 to EID14	
0060h + n • 16 + 4	EID5 to EID0	Data Length Code (DLC)	
0060h + n • 16 + 5	Data Length Code (DLC)	EID5 to EID0	
0060h + n • 16 + 6	Data byte 0	Data byte 1	
006016 + n • 16 + 7	Data byte 1	Data byte 0	
	•	•	
0060h + n • 16 + 13	Data byte 7	Data byte 6	
0060h + n • 16 + 14	Time stamp high-order byte	Time stamp low-order byte	
0060h + n • 16 + 15	Time stamp low-order byte	Time stamp high-order byte	

n = 0 to 15: the number of the slot

Figures 18.2 and 18.3 show the bit mapping in each slot in byte access and word access. The content of each slot remains unchanged unless transmission or reception of a new message is performed.

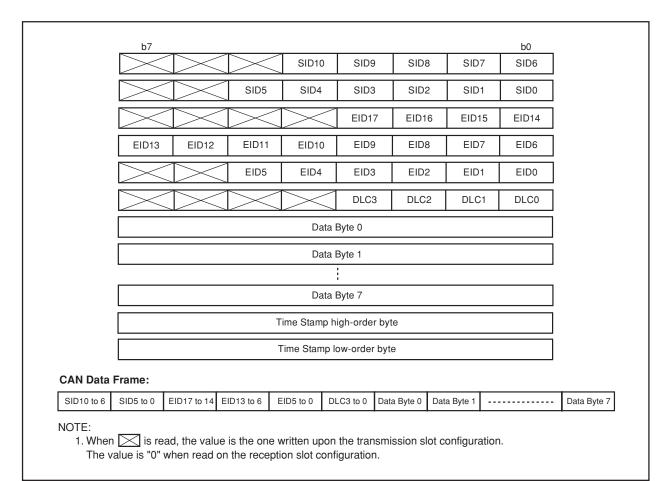


Figure 18.2 Bit Mapping in Byte Access

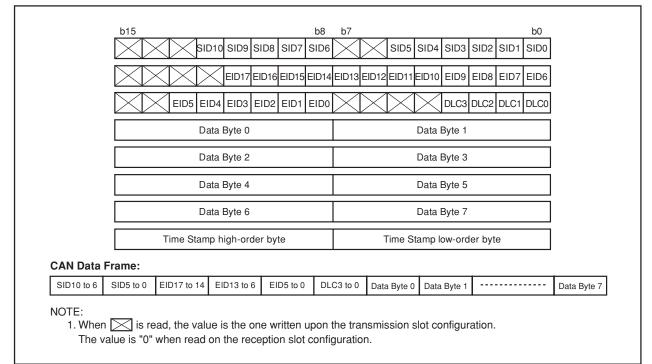


Figure 18.3 Bit Mapping in Word Access

18.3 Acceptance Mask Registers

Figures 18.4 and 18.5 show the COGMR register, the COLMAR register, and the COLMBR register, in which bit mapping in byte access and word access are shown.

b7	\ge	\succ	SID10	SID9	SID8	SID7	b0 SID6	CAN0 0160h
$\overline{>}$	\searrow	SID5	SID4	SID3	SID2	SID1	SID0	0161h
\ge	\succ	\succ	\succ	EID17	EID16	EID15	EID14	0162h C0GMR register
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	0163h
\geq	\geq	EID5	EID4	EID3	EID2	EID1	EID0	0164h
\ge	\geq	\succ	SID10	SID9	SID8	SID7	SID6	0166h
\ge	\succ	SID5	SID4	SID3	SID2	SID1	SID0	0167h
\ge	\ge	\succ	\ge	EID17	EID16	EID15	EID14	0168h COLMAR register
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	0169h
\ge	\geq	EID5	EID4	EID3	EID2	EID1	EID0	016Ah
\ge	\succ	\succ	SID10	SID9	SID8	SID7	SID6	016Ch
\ge	\ge	SID5	SID4	SID3	SID2	SID1	SID0	016Dh
\ge	\geq	\geq	\ge	EID17	EID16	EID15	EID14	016Eh COLMBR register
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	016Fh
\ge	\geq	EID5	EID4	EID3	EID2	EID1	EID0	0170h
NOTES:	⊲ is unde							

Figure 18.4 Bit Mapping of Mask Registers in Byte Access

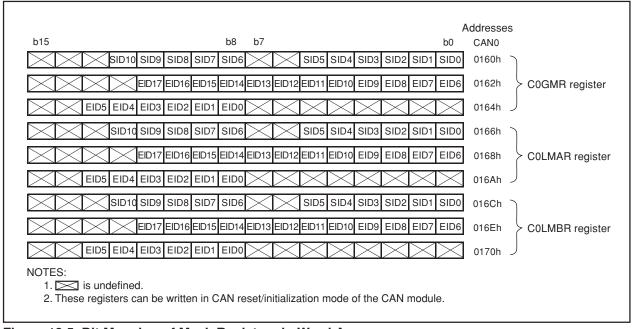


Figure 18.5 Bit Mapping of Mask Registers in Word Access

18.4 CAN SFR Registers

Figures 18.6 to 18.12 show the CAN SFR registers.

CAN0 Messa	ge Control Rec	gisterj(j	= 0 to 15) ⁽⁴⁾		
b7 b6 b5 b4	b3 b2 b1 b0		/mbol to C0MCTL15	Address After Reset 0200h to 020Fh 00h	
		Bit Symbol	Bit Name	Function	RW
		NewData	Successful Reception Flag	 When set to reception slot 0: The content of the slot is read or still under processing by the CPU. 1 The CAN module has stored new data in the slot. 	RO ⁽¹⁾
		SentData	Successful Transmission Flag	When set to transmission slot 0: Transmission is not started or completed yet. 1: Transmission is successfully completed.	RO ⁽¹⁾
		InvalData	"Under Reception" Flag	When set to reception slot 0: The message is valid. 1: The message is invalid. (The message is being updated.)	RO
		TrmActive	"Under Transmission" Flag	When set to transmission slot 0: Waiting for bus idle or completion of arbitration. 1: Transmitting	RO
		MsgLost	Overwrite Flag	 When set to reception slot 0: No message has been overwritten in this slot. 1: This slot already contained a message, but it has been overwritten by a new one. 	RO ⁽¹⁾
		RemActive	Remote Frame Transmission/ Reception Status Flag ⁽²⁾	0: Data frame transmission/reception status 1: Remote frame transmission/reception status	RW
		RspLock	Auto Response Lock Mode Select Bit	 When set to reception remote frame slot O: After a remote frame is received, it will be answered automatically. 1: After a remote frame is received, no transmission will be started as long as this bit is set to "1". (Not responding) 	RW
· · · · · · · · · · · · · · · · · · ·		Remote	Remote Frame Corresponding Slot Select Bit	0: Slot not corresponding to remote frame 1: Slot corresponding to remote frame	RW
		RecReq	Reception Slot Request Bit ⁽³⁾	0: Not reception slot 1: Reception slot	RW
		TrmReq	Transmission Slot Request Bit (3)	0: Not transmission slot 1: Transmission slot	RW

NOTES:

1. As for write, only writing "0" is possible. The value of each bit is written when the CAN module enters the respective state.

In Basic CAN mode, slots 14 and 15 serve as data format identification flag.
 The RemActive bit is set to "0" if the data frame is received and it is set to "1" if the remote frame is received.

3. One slot cannot be defined as reception slot and transmission slot at the same time.

4. This register can not be set in CAN reset/initialization mode of the CAN module.

Figure 18.6 COMCTLj Register

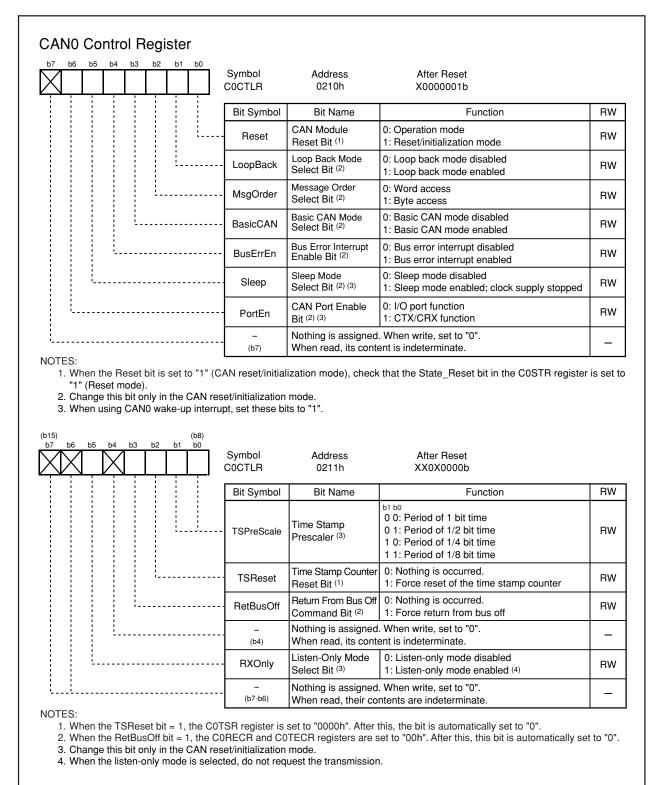


Figure 18.7 C0CTLR Register

CAN1 Control Register ⁽¹⁾				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol C1CTLR	Address 0230h	After Reset X0000001b	
	Bit Symbol	Bit Name	Function	RW
	- (b4-b0)	Reserved Bit	Set to "0"	RW
	- (b5)	Reserved Bit	Set to "1"	RW
	(b6)	Reserved Bit	Set to "0"	RW
	(b7)	Nothing is assigned When read, its cont	d. When write, set to "0".	_
NOTE: 1. Make sure "0020h" is set to this reg "0020h" to this register.			preover, make sure the CCLKR register is	s set after settin
1. Make sure "0020h" is set to this reg				s set after settin
1. Make sure "0020h" is set to this reg "0020h" to this register. (b15) b7 b6 b5 b4 b3 b2 b1 b0	gister (addresse Symbol	es 0230h, 0231h). Mo Address	preover, make sure the CCLKR register is After Reset	s set after settin
1. Make sure "0020h" is set to this reg "0020h" to this register. (b15) b7 b6 b5 b4 b3 b2 b1 b0	gister (addresse Symbol C1CTLR	25 0230h, 0231h). Mo Address 0231h	preover, make sure the CCLKR register is After Reset XX0X0000b	
1. Make sure "0020h" is set to this reg "0020h" to this register. (b15) b7 b6 b5 b4 b3 b2 b1 b0	symbol C1CTLR	Address 0230h, 0231h). Mo Address 0231h Bit Name Reserved Bit Nothing is assigned	After Reset XX0X0000b	RW
1. Make sure "0020h" is set to this reg "0020h" to this register. (b15) b7 b6 b5 b4 b3 b2 b1 b0	symbol C1CTLR Bit Symbol (b3-b0)	Address 0230h, 0231h). Mo Address 0231h Bit Name Reserved Bit Nothing is assigned	After Reset XX0X0000b Function Set to "0"	RW

Figure 18.8 C1CTLR Register

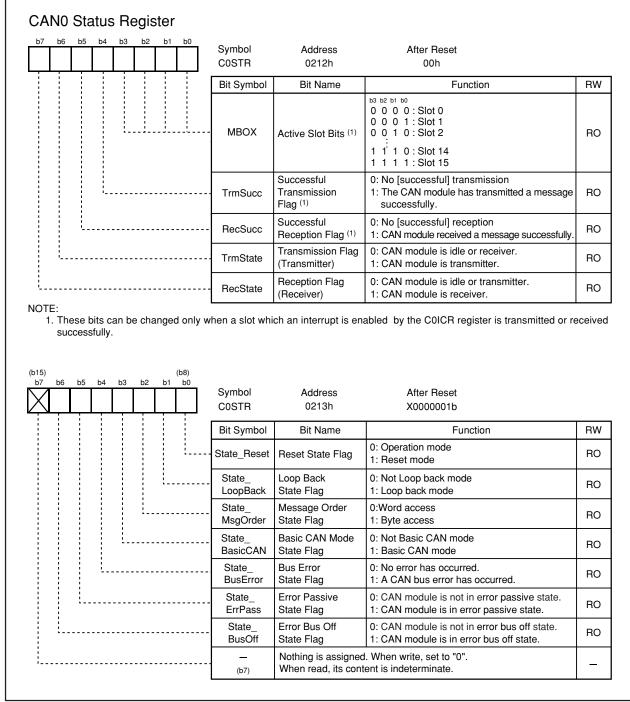
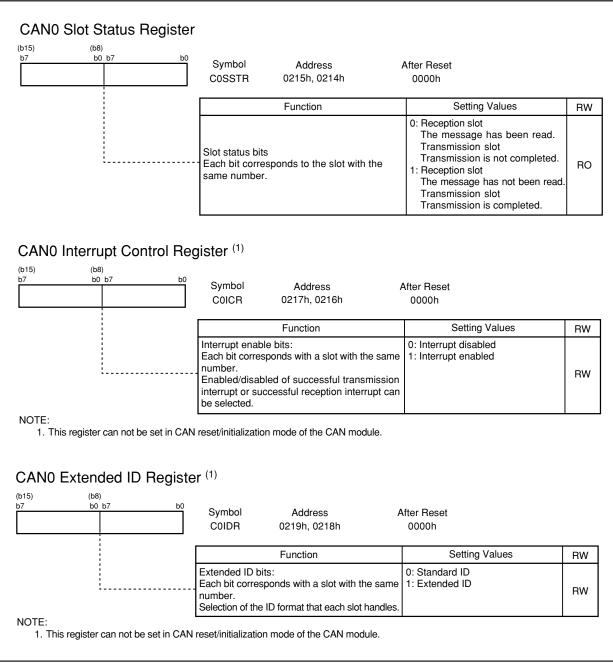



Figure 18.9 COSTR Register

Figure 18.10 COSSTR Register, COICR Register and COIDR Register

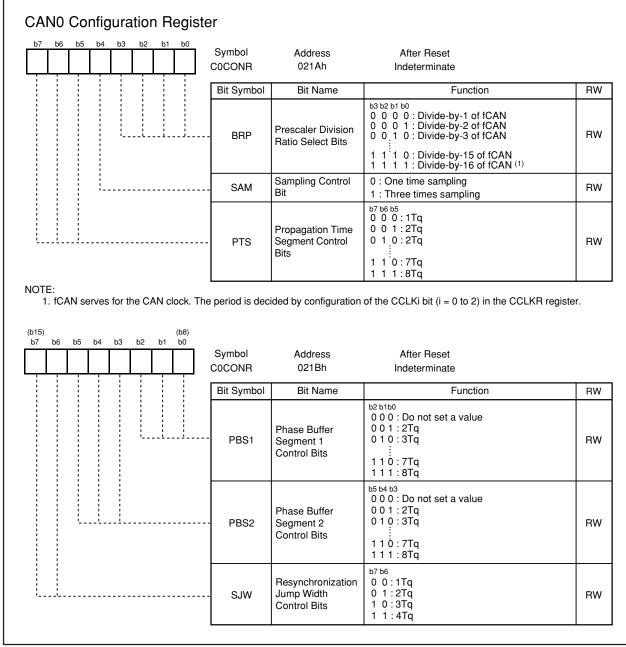


Figure 18.11 COCONR Register

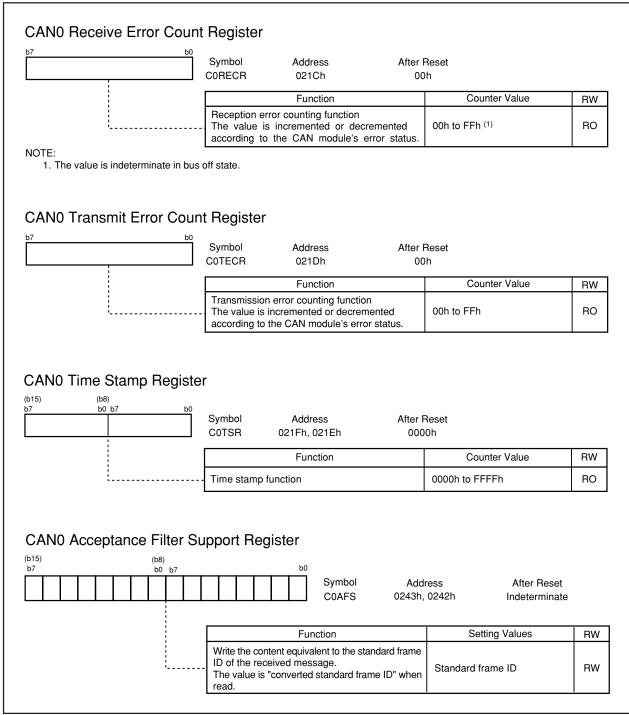


Figure 18.12 CORECR Register, COTECR Register, COTSR Register and COAFS Register

18.5 Operational Modes

The CAN module has the following four operational modes.

- CAN Reset/Initialization Mode
- CAN Operation Mode
- CAN Sleep Mode
- CAN Interface Sleep Mode

Figure 18.13 shows transition between operational modes.

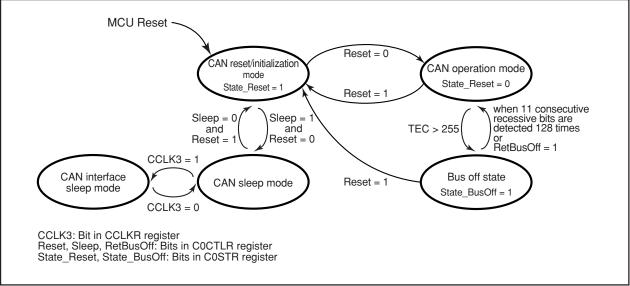


Figure 18.13 Transition Between Operational Modes

18.5.1 CAN Reset/Initialization Mode

The CAN reset/initialization mode is activated upon MCU reset or by setting the Reset bit in the COCTLR register to "1". If the Reset bit is set to "1", check that the State_Reset bit in the COSTR register is set to "1". Entering the CAN reset/initialization mode initiates the following functions by the module:

- CAN communication is impossible.
- When the CAN reset/initialization mode is activated during an ongoing transmission in operation mode, the module suspends the mode transition until completion of the transmission (successful, arbitration loss, or error detection). Then, the State_Reset bit is set to "1", and the CAN reset/initialization mode is activated.
- The COMCTLj (j = 0 to 15), COSTR, COICR, COIDR, CORECR, COTECR and COTSR registers are initialized. All these registers are locked to prevent CPU modification.
- The COCTLR, COCONR, COGMR, COLMAR and COLMBR registers and the CAN0 message box retain their contents and are available for CPU access.

18.5.2 CAN Operation Mode

The CAN operation mode is activated by setting the Reset bit in the COCTLR register to "0". If the Reset bit is set to "0", check that the State_Reset bit in the COSTR register is set to "0".

If 11 consecutive recessive bits are detected after entering the CAN operation mode, the module initiates the following functions:

- The module's communication functions are released and it becomes an active node on the network and may transmit and receive CAN messages.
- Release the internal fault confinement logic including receive and transmit error counters. The module may leave the CAN operation mode depending on the error counts.

Within the CAN operation mode, the module may be in three different sub modes, depending on which type of communication functions are performed:

- Module idle : The modules receive and transmit sections are inactive.
- Module receives : The module receives a CAN message sent by another node.
- Module transmits : The module transmits a CAN message. The module may receive its own message simultaneously when the LoopBack bit in the COCTLR register = 1 (Loop back mode enabled).

Figure 18.14 shows sub modes of the CAN operation mode.

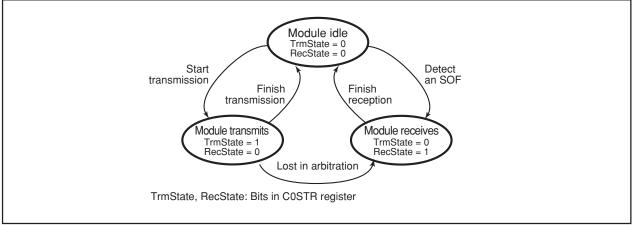


Figure 18.14 Sub Modes of CAN Operation Mode

18.5.3 CAN Sleep Mode

The CAN sleep mode is activated by setting the Sleep bit to "1" and the Reset bit to "0" in the COCTLR register. It should never be activated from the CAN operation mode but only via the CAN reset/initialization mode.

Entering the CAN sleep mode instantly stops the clock supply to the module and thereby reduces power dissipation.

18.5.4 CAN Interface Sleep Mode

The CAN interface sleep mode is activated by setting the CCLK3 bit in the CCLKR register to "1". It should never be activated but only via the CAN sleep mode.

Entering the CAN interface sleep mode instantly stops the clock supply to the CPU Interface in the module and thereby reduces power dissipation.

18.5.5 Bus Off State

The bus off state is entered according to the fault confinement rules of the CAN specification. When returning to the CAN operation mode from the bus off state, the module has the following two cases. In this time, the value of any CAN registers, except COSTR, CORECR and COTECR registers, does not change.

(1) When 11 consecutive recessive bits are detected 128 times

The module enters instantly into error active state and the CAN communication becomes possible immediately.

(2) When the RetBusOff bit in the COCTLR register = 1 (Force return from buss off) The module enters instantly into error active state, and the CAN communication becomes possible again after 11 consecutive recessive bits are detected.

18.6 Configuration CAN Module System Clock

The M16C/6N Group (M16C/6NL, M16C/6NN) has a CAN module system clock select circuit.

Configuration of the CAN module system clock can be done through manipulating the CCLKR register and the BRP bit in the C0CONR register.

For the CCLKR register, refer to 7. Clock Generating Circuit.

Figure 18.15 shows a block diagram of the clock generating circuit of the CAN module system.

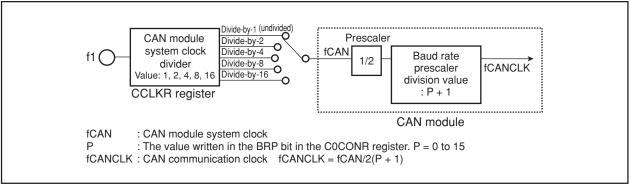
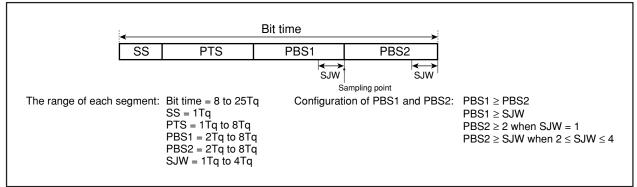


Figure 18.15 Block Diagram of CAN Module System Clock Generating Circuit

18.7 Bit Timing Configuration

The bit time consists of the following four segments:


• Synchronization segment (SS)

This serves for monitoring a falling edge for synchronization.

- Propagation time segment (PTS)
 This segment absorbs physical delay on the CAN network which amounts to double the total sum of delay on the CAN bus, the input comparator delay, and the output driver delay.
- Phase buffer segment 1 (PBS1)
 This serves for compensating the phase error. When the falling edge of the bit falls later than expected, the segment can become longer by the maximum of the value defined in SJW.
- Phase buffer segment 2 (PBS2)

This segment has the same function as the phase buffer segment 1. When the falling edge of the bit falls earlier than expected, the segment can become shorter by the maximum of the value defined in SJW.

Figure 18.16 shows the bit timing.

Figure 18.16 Bit Timing

18.8 Bit-rate

Bit-rate depends on f1, the division value of the CAN module system clock, the division value of the baud rate prescaler, and the number of Tq of one bit.

Table 18.2 shows the examples of bit-rate.

Bit-rate	24MHz	20MHz	16MHz	10MHz	8MHz
1Mbps	12Tq (1)	10Tq (1)	8Tq (1)	_	_
500kbps	12Tq (2)	10Tq (2)	8Tq (2)	10Tq (1)	8Tq (1)
	24Tq (1)	20Tq (1)	16Tq (1)	_	_
125kbps	12Tq (8)	10Tq (8)	8Tq (8)	10Tq (4)	8Tq (4)
	16Tq (6)	20Tq (4)	16Tq (4)	20Tq (2)	16Tq (2)
	24Tq (4)	_	_	_	_
83.3kbps	12Tq (12)	10Tq (12)	8Tq (12)	10Tq (6)	8Tq (6)
	16Tq (9)	20Tq (6)	16Tq (6)	20Tq (3)	16Tq (3)
	24Tq (6)	_	_	_	_
33.3kbps	12Tq (30)	10Tq (30)	8Tq (30)	10Tq (15)	8Tq (15)
	24Tq (15)	20Tq (15)	16Tq (15)	_	_

Table 18.2 Examples of Bit-rate

NOTE:

1. The number in () indicates a value of "fCAN division value" multiplied by "baud rate prescaler division value".

Calculation of Bit-rate

f1

2 × "fCAN division value $^{(1)}$ " × "baud rate prescaler division value $^{(2)}$ " × "number of Tq of one bit"

NOTES:

1. fCAN division value = 1, 2, 4, 8, 16

fCAN division value: a value selected in the CCLKR register

2. Baud rate prescaler division value = P + 1 (P: 0 to 15)

P: a value selected in the BRP bit in the COCONR register

18.9 Acceptance Filtering Function and Masking Function

These functions serve the users to select and receive a facultative message. The COGMR register, the COLMAR register, and the COLMBR register can perform masking to the standard ID and the extended ID of 29 bits. The COGMR register corresponds to slots 0 to 13, the COLMAR register corresponds to slot 14, and the COLMBR register corresponds to slot 15. The masking function becomes valid to 11 bits or 29 bits of a received ID according to the value in the corresponding slot of the COIDR register upon acceptance filtering operation. When the masking function is employed, it is possible to receive a certain range of IDs. Figure 18.17 shows correspondence of the mask registers and slots, Figure 18.18 shows the acceptance function.

Figure 18.17 Correspondence of Mask Registers to Slots

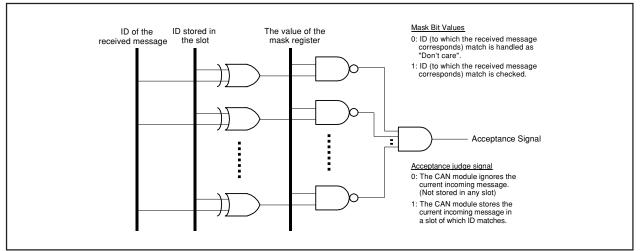


Figure 18.18 Acceptance Function

When using the acceptance function, note the following points.

- (1) When one ID is defined in two slots, the one with a smaller number alone is valid.
- (2) When it is configured that slots 14 and 15 receive all IDs with Basic CAN mode, slots 14 and 15 receive all IDs which are not stored into slots 0 to 13.

18.10 Acceptance Filter Support Unit (ASU)

The acceptance filter support unit has a function to judge valid/invalid of a received ID through table search. The IDs to receive are registered in the data table; a received ID is stored in the COAFS register, and table search is performed with a decoded received ID. The acceptance filter support unit can be used for the IDs of the standard frame only.

The acceptance filter support unit is valid in the following cases.

- When the ID to receive cannot be masked by the acceptance filter. (Example) IDs to receive: 078h, 087h, 111h
- When there are too many IDs to receive; it would take too much time to filter them by software.

Figure 18.19 shows the write and read of the COAFS register in word access.

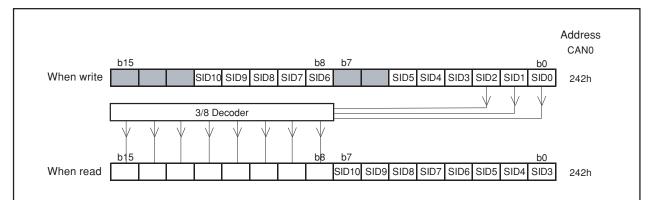


Figure 18.19 Write/read of COAFS Register in Word Access

18.11 Basic CAN Mode

When the BasicCAN bit in the COCTLR register is set to "1" (Basic CAN mode enabled), slots 14 and 15 correspond to Basic CAN mode. In normal operation mode, each slot can handle only one type message at a time, either a data frame or a remote frame by setting COMCTLj register (j = 0 to 15). However, in Basic CAN mode, slots 14 and 15 can receive both types of message at the same time.

When slots 14 and 15 are defined as reception slots in Basic CAN mode, received messages are stored in slots 14 and 15 alternately.

Which type of message has been received can be checked by the RemActive bit in the C0MCTLj register. Figure 18.20 shows the operation of slots 14 and 15 in Basic CAN mode.

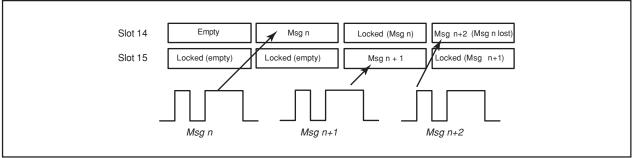


Figure 18.20 Operation of Slots 14 and 15 in Basic CAN Mode

When using Basic CAN mode, note the following points.

- (1) Setting of Basic CAN mode has to be done in CAN reset/initialization mode.
- (2) Select the same ID for slots 14 and 15. Also, setting of the C0LMAR and C0LMBR register has to be the same.
- (3) Define slots 14 and 15 as reception slot only.
- (4) There is no protection available against message overwrite. A message can be overwritten by a new message.
- (5) Slots 0 to 13 can be used in the same way as in normal CAN operation mode.

18.12 Return from Bus Off Function

When the protocol controller enters bus off state, it is possible to make it forced return from bus off state by setting the RetBusOff bit in the COCTLR register to "1" (Force return from bus off). At this time, the error state changes from bus off state to error active state. If the RetBusOff bit is set to "1", the CORECR and COTECR registers are initialized and the State_BusOff bit in the COSTR register is set to "0" (CAN module is not in error bus off state). However, registers of the CAN module such as COCONR register and the content of each slot are not initialized.

18.13 Time Stamp Counter and Time Stamp Function

When the C0TSR register is read, the value of the time stamp counter at the moment is read. The period of the time stamp counter reference clock is the same as that of 1 bit time that is configured by the C0CONR register. The time stamp counter functions as a free run counter.

The 1 bit time period can be divided by 1 (undivided), 2, 4 or 8 to produce the time stamp counter reference clock. Use the TSPreScale bit in the C0CTLR register to select the divide-by-n value.

The time stamp counter is equipped with a register that captures the counter value when the protocol controller regards it as a successful reception. The captured value is stored when a time stamp value is stored in a reception slot.

18.14 Listen-Only Mode

When the RXOnly bit in the C0CTLR register is set to "1", the module enters listen-only mode.

In listen-only mode, no transmission, such as data frames, error frames, and ACK response, is performed to bus.

When listen-only mode is selected, do not request the transmission.

18.15 Reception and Transmission

Table 18.3 shows configuration of CAN reception and transmission mode.

TrmReq	RecReq	Remote	RspLock	Communication Mode of Slot				
0	0	-	-	Communication environment configuration mode:				
				configure the communication mode of the slot.				
0	1	0	0	Configured as a reception slot for a data frame.				
1	0	1	0	Configured as a transmission slot for a remote frame.				
				(At this time the RemActive = 1.)				
				After completion of transmission, this functions as a reception				
				slot for a data frame. (At this time the RemActive = 0.)				
				However, when an ID that matches on the CAN bus is detect				
				before remote frame transmission, this immediately functions				
				as a reception slot for a data frame.				
1	0	0	0	Configured as a transmission slot for a data frame.				
0	1	1	1/0	Configured as a reception slot for a remote frame.				
				(At this time the RemActive = 1.)				
				After completion of reception, this functions as a transmission				
				slot for a data frame. (At this time the RemActive = 0.)				
				However, transmission does not start as long as RspLock bit				
				remains "1"; thus no automatic response.				
				Response (transmission) starts when the RspLock bit is set to "0".				

Table 18.3	Configuration of	of CAN Reception and	Transmission Mode
------------	------------------	----------------------	-------------------

TrmReq, RecReq, Remote, RspLock, RemActive, RspLock: Bits in C0MCTLj register (j = 0 to 15)

When configuring a slot as a reception slot, note the following points.

- (1) Before configuring a slot as a reception slot, be sure to set the COMCTLj register to "00h".
- (2) A received message is stored in a slot that matches the condition first according to the result of reception mode configuration and acceptance filtering operation. Upon deciding in which slot to store, the smaller the number of the slot is, the higher priority it has.
- (3) In normal CAN operation mode, when a CAN module transmits a message of which ID matches, the CAN module never receives the transmitted data. In loop back mode, however, the CAN module receives back the transmitted data. In this case, the module does not return ACK.

When configuring a slot as a transmission slot, note the following points.

- (1) Before configuring a slot as a transmission slot, be sure to set the COMCTLj registers to "00h".
- (2) Set the TrmReq bit in the COMCTLj register to "0" (not transmission slot) before rewriting a transmission slot.
- (3) A transmission slot should not be rewritten when the TrmActive bit in the C0MCTLj register is "1" (transmitting).

If it is rewritten, an indeterminate data will be transmitted.

18.15.1 Reception

Figure 18.21 shows the behavior of the module when receiving two consecutive CAN messages, that fit into the slot of the shown COMCTLj register (j = 0 to 15) and leads to losing/overwriting of the first message.

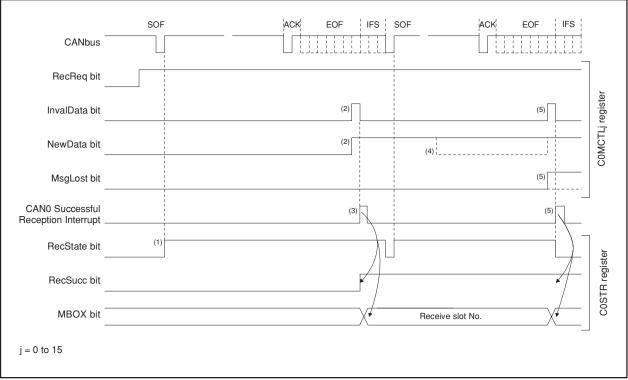
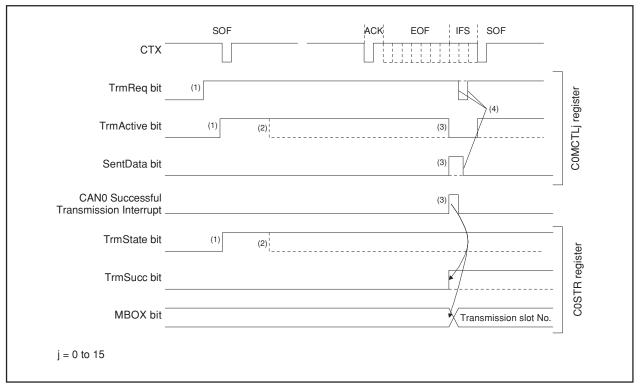



Figure 18.21 Timing of Receive Data Frame Sequence

- (1) On monitoring a SOF on the CAN bus the RecState bit in the C0STR register becomes "1" (CAN module is receiver) immediately, given the module has no transmission pending.
- (2) After successful reception of the message, the NewData bit in the COMCTLj register of the receiving slot becomes "1" (stored new data in slot). The InvalData bit in the COMCTLj register becomes "1" (message is being updated) at the same time and the InvalData bit becomes "0" (message is valid) again after the complete message was transferred to the slot.
- (3) When the interrupt enable bit in the COICR register of the receiving slot = 1 (interrupt enabled), the CAN0 successful reception interrupt request is generated and the MBOX bit in the COSTR register is changed. It shows the slot number where the message was stored and the RecSucc bit in the COSTR register is active.
- (4) Read the message out of the slot after setting the New Data bit to "0" (the content of the slot is read or still under processing by the CPU) by a program.
- (5) If the NewData bit is set to "0" by a program or the next CAN message is received successfully before the receive request for the slot is canceled, the MsgLost bit in the COMCTLj register is set to "1" (message has been overwritten). The new received message is transferred to the slot. Generating of an interrupt request and change of the COSTR register are same as in 3).

18.15.2 Transmission

Figure 18.22 shows the timing of the transmit sequence.

Figure 18.22 Timing of Transmit Sequence

- (1) If the TrmReq bit in the COMCTLj register (j = 0 to 15) is set to "1" (Transmission slot) in the bus idle state, the TrmActive bit in the COMCTLj register and the TrmState bit in the COSTR register are set to "1" (Transmitting/Transmitter), and CAN module starts the transmission.
- (2) If the arbitration is lost after the CAN module starts the transmission, the TrmActive and TrmState bits are set to "0".
- (3) If the transmission has been successful without lost in arbitration, the SentData bit in the COMCTLj register is set to "1" (Transmission is successfully completed) and TrmActive bit is set to "0" (Waiting for bus idle or completion of arbitration). And when the interrupt enable bits in the COICR register = 1 (Interrupt enabled), CAN0 successful transmission interrupt request is generated and the MBOX (the slot number which transmitted the message) and TrmSucc bit in the COSTR register are changed.
- (4) When starting the next transmission, set the SentData and TrmReq bits to "0". And set the TrmReq bit to "1" after checking that the SentData and TrmReq bits are set to "0".

18.16 CAN Interrupt

The CAN module provides the following CAN interrupts.

- CAN0 Successful Reception Interrupt
- CAN0 Successful Transmission Interrupt
- CAN0 Error Interrupt: Error Passive State

Error BusOff State

Bus Error (this feature can be disabled separately)

CAN0 Wake-up Interrupt

When the CPU detects the CAN0 successful reception/transmission interrupt request, the MBOX bit in the C0STR register must be read to determine which slot has generated the interrupt request.

19. Programmable I/O Ports

The programmable input/output ports (hereafter referred to simply as I/O ports) consist of 87 lines P0 to P10 in the 100-pin version and consist of 113 lines P0 to P14 in the 128-pin version. Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high every 4 lines. P8_5 is an input-only port and does not have a pull-up resistor. Port P8_5 shares the pin with NMI, so that the NMI input level can be read from the P8_5 bit in the P8 register.

Table 19.1 lists the number of pins of the I/O ports of each package. Figures 19.1 to 19.5 show the I/O ports. Figure19.6 shows the I/O pins.

Each pin functions as an I/O port or a peripheral function input/output pin.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input, SI/O4 output or D/A converter output pin, set the direction bit for that pin to "0" (input mode). Any pin used as an output pin for peripheral functions other than the SI/O4 and D/A converter is directed for output no matter how the corresponding direction bit is set.

	128-pin Version	100-pin Version
I/O Ports	P0_0 to P0_7	P0_0 to P0_7
	P1_0 to P1_7	P1_0 to P1_7
	P2_0 to P2_7	P2_0 to P2_7
	P3_0 to P3_7	P3_0 to P3_7
	P4_0 to P4_7	P4_0 to P4_7
	P5_0 to P5_7	P5_0 to P5_7
	P6_0 to P6_7	P6_0 to P6_7
	P7_0 to P7_7	P7_0 to P7_7
	P8_0 to P8_4, P8_6, P8_7	P8_0 to P8_4, P8_6, P8_7
	(P8_5 is an input port)	(P8_5 is an input port)
	P9_0 to P9_7	P9_0 to P9_7
	P10_0 to P10_7	P10_0 to P10_7
	P11_0 to P11_7	
	P12_0 to P12_7	
	P13_0 to P13_7	
	P14_0, P14_1	
Total	113 pins	87 pins

Table 19.1 Number of Pins of I/O Ports of Each Package

19.1 PDi Register (100-pin Version: i = 0 to 10, 128-pin Version: i = 0 to 13)

Figure19.7 shows the PDi register.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

No direction register bit for P8_5 is available.

19.2 Pi Register (100-pin Version: i = 0 to 10, 128-pin Version: i = 0 to 13), PC14 Register

Figure 19.8 shows the Pi register.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the input/output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

About the port P14 (128-pin version), Figure19.8 shows the PC14 register.

19.3 PURj Register (100-pin Version: j = 0 to 2, 128-pin Version: j = 0 to 3)

Figures 19.9 and 19.10 show the PURj register.

The PURj register bits can be used to select whether or not to pull the corresponding port high in 4-bit unit. The port selected to be pulled high has a pull-up resistor connected to it when the direction bit is set for input mode.

When using the ports P11 to P14, set the PUR37 bit in the PUR3 register to "1" (P11 to P14 are usable).

19.4 PCR Register

Figure 19.11 shows the PCR register.

When the P1 register is read after setting the PCR0 bit in the PCR register to "1", the corresponding port latch can be read no matter how the PD1 register is set.

Table 19.2 lists an example connection of unused pins. Figure19.12 shows an example connection of unused pins.

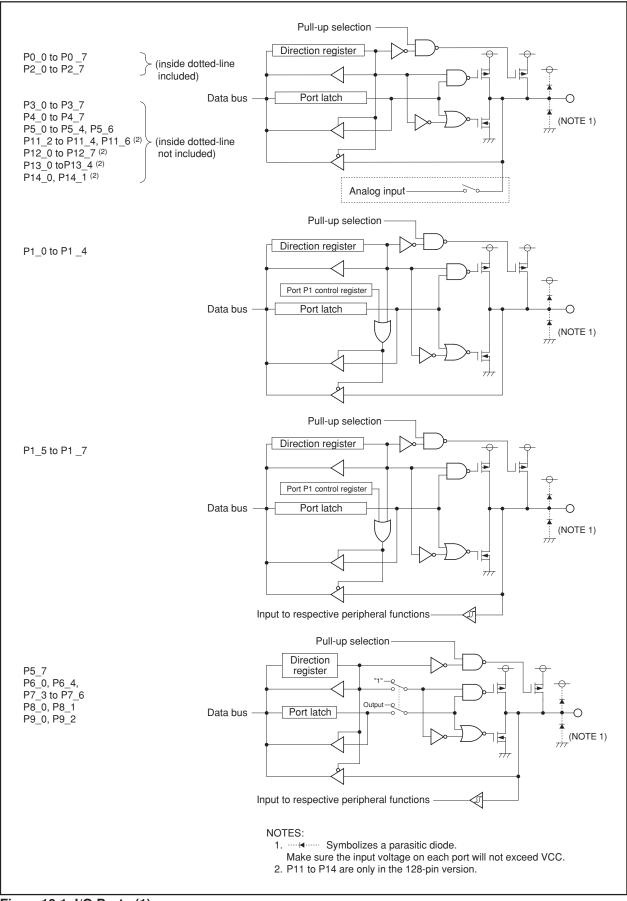
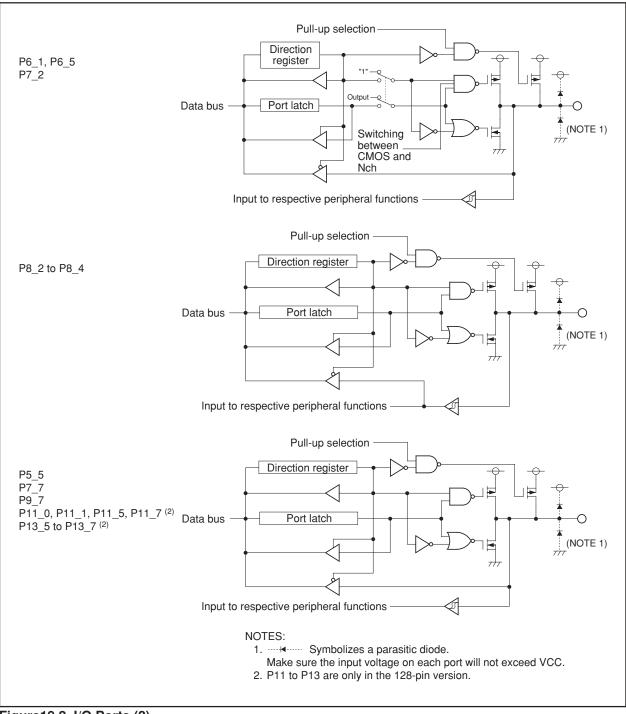



Figure19.1 I/O Ports (1)

Figure19.2 I/O Ports (2)

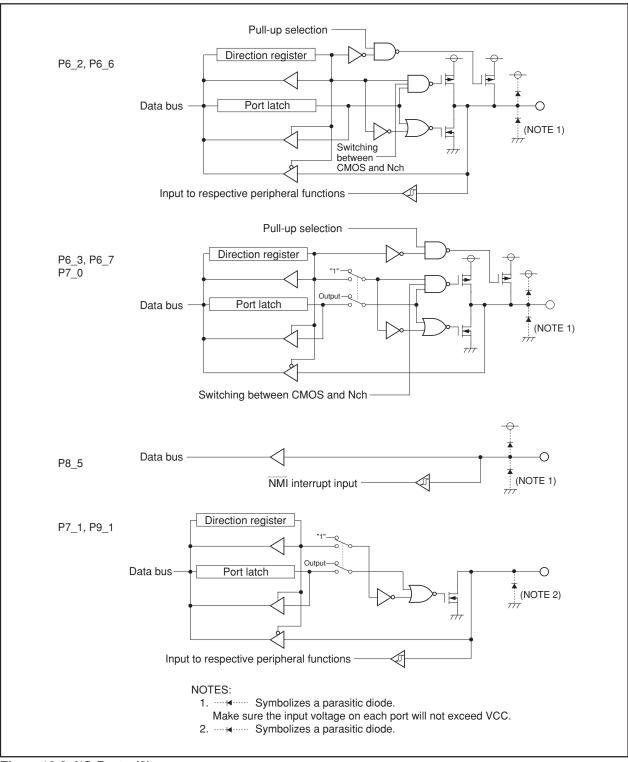
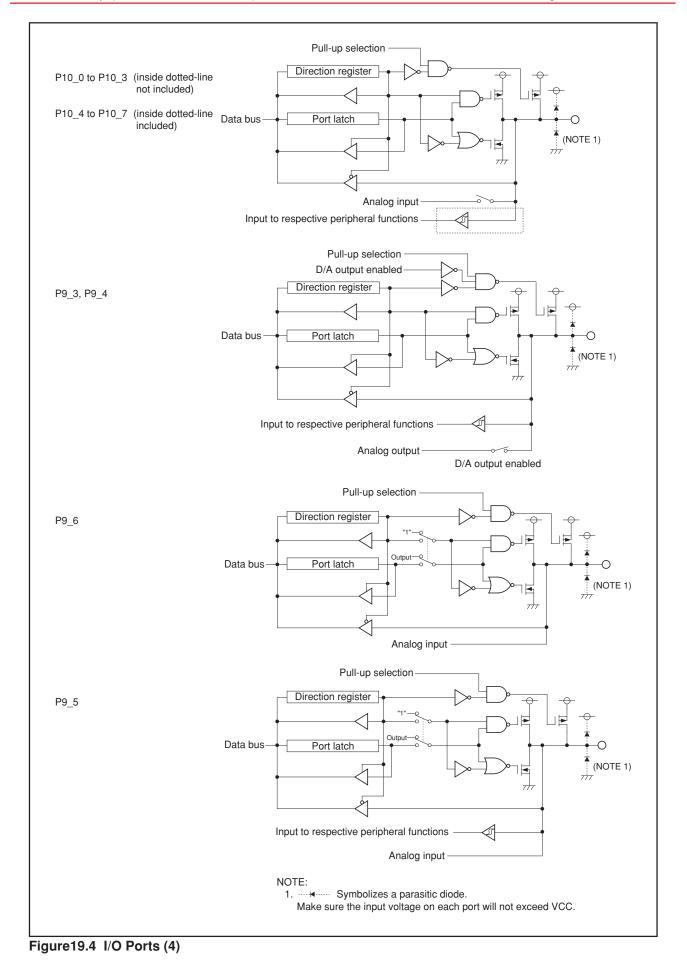
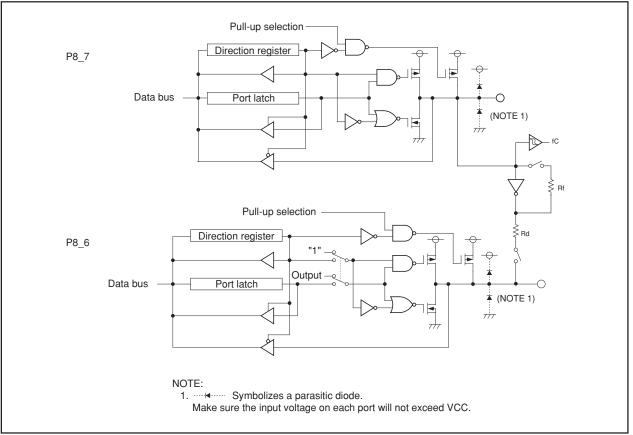




Figure19.3 I/O Ports (3)

Rev.1.02 Jul 01, 2005 page 228 of 314 REJ09B0126-0102

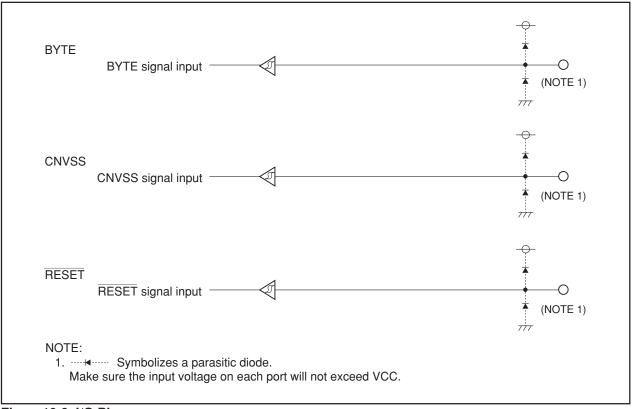
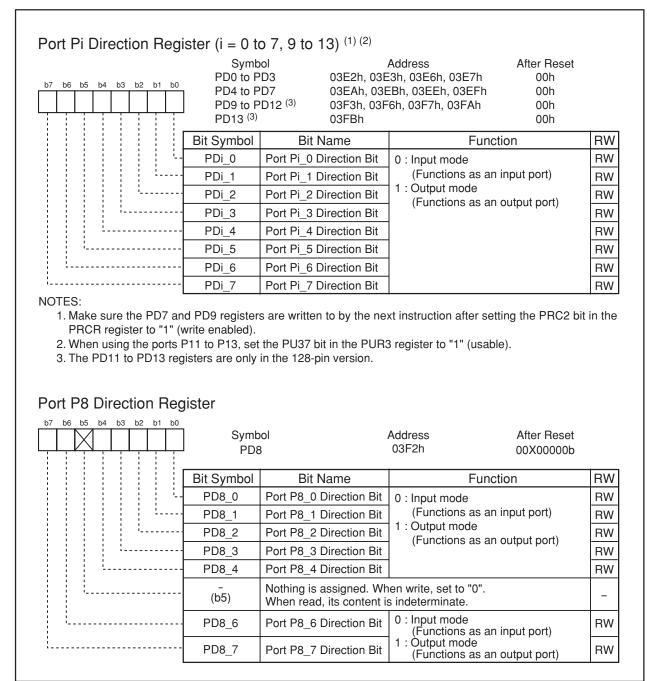



Figure19.6 I/O Pins

Figure19.7 PD0 to PD13 Registers

b7 b6	b5	b4	b3	b2	b1		Symb P0 to P3 P4 to P3 P9 to P3 P13 ⁽³⁾	3 7	03E0h, 03E 03E8h, 03E	Address 1h, 03E4h, 03E5h 9h, 03ECh, 03EDh 4h, 03F5h, 03F8h	After Reset Indeterminate Indeterminate Indeterminate Indeterminate	
				į	į		Bit Symbol	Bit Na	ame	Func	tion	R٧
						Ę	Pi_0	Port Pi_0 B	lit	The pin level on any l/		R٧
		1		Ì	i.,		Pi_1	Port Pi_1 B	lit	for input mode can b		R٧
				¦			Pi_2	Port Pi_2 B	lit	the corresponding bit in this regi The pin level on any I/O port wh		R٧
							Pi_3	Port Pi_3 B	lit	set for output mode		R٧
						Pi_4	Port Pi_4 B	Bit by writing to the c		prresponding bit in	R٧	
							Pi_5	Port Pi_5 B	lit	0 : "L" level		R٧
							Pi_6	Port Pi_6 B	lit	1 : "H" level		R٧
¦							Pi 7	Port Pi 7 B	lit	1		RW

NOTES:

1. Since P7_1 and P9_1 are N channel open-drain ports, the data is high-impedance.

2. When using the ports P11 to P13, set the PU37 bit in the PUR3 register to "1" (usable).

If this bit is set to "0" (unusable), the P11 to P13 registers are set to "00h".

3. The P11 to P13 registers are only in the 128-pin version.

Port P8 Register

b7 b6 b5 b4 b3 b2 b1 b0] Symb P8	ol	Address 03F0h	After Reset Indeterminate	
	Bit symbol	Bit name	Fur	oction	RW
	P8_0	Port P8 _0 Bit		//O port which is set	RW
	P8_1	Port P8 _1 Bit	for input mode can the corresponding	be read by reading	RW
	Pi8_2	Port P8 _2 Bit	The pin level on a	ny I/O port which is	RW
	P8_3	Port P8 _3 Bit		e can be controlled orresponding bit in	RW
	P8_4	Port P8 _4 Bit	this register. (Exce		RW
	P8_5	Port P8 _5 Bit	0 : "L" level	/	RO
i	P8_6	Port P8 _6 Bit	1 : "H" level		RW
	P8_7	Port P8 _7 Bit			RW

Port P14 Control Regisrer (128-pin version) (1)

b7 b6 b5 b4 b3 b2 b1 b0	Symb PC1		Address 03DEh	After Reset XX00XXXXb	
	Bit Symbol	Bit Name	Fu	nction	RW
	P140	Port P14_0 Bit	The pin level on any I/O port which is set for input mode can be read by reading th corresponding bit in this register. The pin level on any I/O port which isset for		RW
	P141	Port P14_1 Bit	output mode can be the corresponding b 0 : "L" level 1 : "H" level	controlled by writing to it in this register.	RW
	(b3-b2)	Nothing is assigned. When write, set to "0". When read, their contents are indeterminate.			-
	PD140	Port P14_0 Direction Bit	0 : Input mode (Functions as a	n input port)	RW
	PD141	Port P14_1 Direction Bit	1 : Output mode (Functions as a		
	_ (b7-b6)		ssigned. When write, set to "0". their contents are indeterminate.		
NOTE: 1 When using the port P	14 cot the PLIS	27 hit in the PLIP2 regio	stor to "1" (ucabla)		

1. When using the port P14, set the PU37 bit in the PUR3 register to "1" (usable).

Figure19.8 P0 to P13 Registers and PC14 Register

Pull-up Control Register 0

							0					
b7	b6	b5	b4	b3	b2	b1	b0	Symbo PUR0		Address 03FCh	After Reset 00h	
								Bit Symbol	Bit Name		Function	RW
							÷.,	PU00	P0_0 to P0_3 Pull-Up		0 : Not pulled high	RW
					÷.	i		PU01	P0_4 to P0_7 Pull-Up		1 : Pulled high ⁽¹⁾	RW
					i			PU02	P1_0 to P1_3 Pull-Up			RW
		1		¦				PU03	P1_4 to P1_7 Pull-Up			RW
			ί.					PU04	P2_0 to P2_3 Pull-Up			RW
		1.						PU05	P2_4 to P2_7 Pull-Up			RW
	ί.							PU06	P3_0 to P3_3 Pull-Up]	RW
:-								PU07	P3_4 to P3_7 Pull-Up			RW

NOTE:

1. The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Pull-up Control Register 1

	7 b	6 b5	b4	b3	b2	b1	b0	Symbo PUR1		After Reset 00h	
				Ì		ł		Bit Symbol	Bit Name	Function	RW
							ί.	PU10	P4_0 to P4_3 Pull-Up	0 : Not pulled high	RW
				į				PU11	P4_4 to P4_7 Pull-Up	1 : Pulled high ⁽²⁾	RW
					1			PU12	P5_0 to P5_3 Pull-Up		RW
				i.				PU13	P5_4 to P5_7 Pull-Up		RW
			<u>.</u>					PU14	P6_0 to P6_3 Pull-Up		RW
		1.						PU15	P6_4 to P6_7 Pull-Up		RW
	ļ							PU16	P7_0, P7_2 and P7_3 Pull-Up (1)		RW
;								PU17	P7_4 to P7_7 Pull-Up		RW

NOTES:

1. The P7_1 pin does not have pull-up.

2. The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Pull-up Control Register 2

b7 b6 b5 b4 b3 b2 b1 b0	Symbo PUR2		After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	PU20	P8_0 to P8_3 Pull-Up	0 : Not pulled high	RW
	PU21	P8_4, P8_6 and P8_7 Pull-Up $^{(1)}$	1 : Pulled high ⁽³⁾	RW
	PU22	P9_0, P9_2 and P9_3 Pull-Up $^{(2)}$		RW
	PU23	P9_4 to P9_7 Pull-Up		RW
	PU24	P10_0 to P10_3 Pull-Up		RW
	PU25	P10_4 to P10_7 Pull-Up		RW
- Nothing is assigned. When write, set to "0". (b7-b6) When read, their contents are "0".			_	

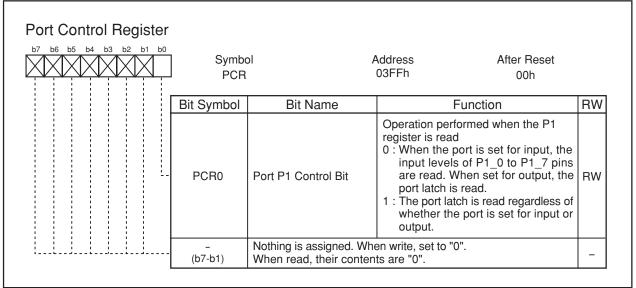
NOTES:

1. The P8_5 pin does not have pull-up.

2. The P9_1 pin does not have pull-up.

3. The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Figure 19.9 PUR0 Register, PUR1 Register and PUR2 Register


Pull-up Control Register 3 (128-pin version) b1 b0 b5 b4 b3 b2 b7 b6 Symbol Address After Reset 03DFh PUR3 00h Bit Symbol Bit Name Function RW PU30 P11_0 to P11_3 Pull-Up 0 : Not pulled high RW PU31 1 : Pulled high (1) P11_4 to P11_7 Pull-Up RW PU32 P12_0 to P12_3 Pull-Up RW **PU33** RW P12_4 to P12_7 Pull-Up **PU34** P13_0 to P13_3 Pull-Up RW PU35 P13_4 to P13_7 Pull-Up RW PU36 P14_0, P14_1 Pull-Up RW 0 : Unusable (2) PU37 RW P11 to P14 Enabling Bit 1: Usable

NOTES:

1. The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

2. If the PU37 bit is set to "0" (unusable), the P11 to P14 registers are set to "00h".

Figure19.10 PUR3 Register

Figure19.11 PCR Register

Pin Name	Connection
Ports P0 to P7, P8_0 to P8_4,	After setting for input mode, connect every pin to VSS via a resistor (pull-down);
P8_6, P8_7, P9 to P14 ⁽⁵⁾	or after setting for output mode, leave these pins open. $^{(1)}$ $^{(2)}$ $^{(3)}$
XOUT (4)	Open
NMI(P8_5)	Connect via resistor to VCC (pull-up)
AVCC	Connect to VCC
AVSS, VREF, BYTE	Connect to VSS

Table 19.2 Unassigned Pin Handling

NOTES:

- When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes indeterminate, causing the power supply current to increase while the port remains in input mode. Furthermore, by considering a possibility that the contents of the direction registers could be changed by noise or noise-induced runaway, it is recommended that the contents of the direction registers be periodically reset in software, for the increased reliability of the program.
- 2. Make sure the unused pins are processed with the shortest possible wiring from the microcomputer pins (within 2 cm).
- 3. When the ports P7_1 and P9_1 are set for output mode, make sure a low-level signal is output from the pins. The ports P7_1 and P9_1 are N-channel open-drain outputs.
- 4. With external clock input to XIN pin.
- 5. The ports P11 to P14 are only in the 128-pin version. When not using all of the P11 to p14 pins may be left open by setting the PU37 bit in the PUR3 register to "0" (P11 to P14 unusable), without causing any problem.

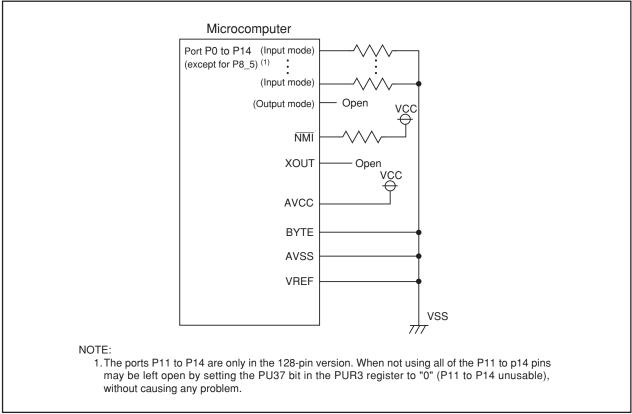


Figure 19.12 Unassigned Pins Handling

20. Flash Memory Version

Aside from the built-in flash memory, the flash memory version microcomputer has the same functions as the masked ROM version.

In the flash memory version, the flash memory can perform in four rewrite mode: CPU rewrite mode, standard serial I/O mode, parallel I/O mode and CAN I/O mode.

Table 20.1 lists the specifications of the flash memory version. See Tables 1.1 and 1.2 Performance outline, for the items not listed in Table 20.1). Table 20.2 shows the outline of flash memory rewrite mode.

Table 20.1	Flash	Memory	Version	Specifications
------------	-------	--------	---------	----------------

Item		Specifications	
Flash Memory Operating Mode		4 modes (CPU rewrite, standard serial I/O, parallel I/O, CAN I/O)	
Erase Block	User ROM Area	See Figure 20.1 Flash Memory Block Diagram	
	Boot ROM Area	1 block (4 Kbytes) ⁽¹⁾	
Program Method		In units of word, in units of byte (2)	
Erase Method		Collective erase, block erase	
Program and Erase Control Method		Program and erase controlled by software command	
Protect Method		Lock bit protects each block	
Number of Commands		8 commands	
Program and Erase Endurance ⁽³⁾		100 times	
ROM Code Protection		Parallel I/O , standard serial I/O and CAN I/O modes are supported.	

NOTES:

1. The boot ROM area contains a standard serial I/O mode and CAN I/O mode rewrite control program which is stored in it when shipped from the factory. This area can only be rewritten in parallel I/O mode.

2. Can be programmed in byte units in only parallel I/O mode.

3. Definition of program and erase endurance

The programming and erasure times are defined to be per-block erasure times. For example, assume a case where a 4K-byte block A is programmed in 2,048 operations by writing one word at a time and erased thereafter. In this case, the block is reckoned as having been programmed and erased once.

If a product is guaranteed of 100 times of programming and erasure, each block in it can be erased up to 100 times.

Flash Memory Rewrite Mode	CPU Rewrite Mode ⁽¹⁾	Standard Serial I/O Mode	Parallel I/O Mode	CAN I/O Mode
Function	rewritten when the CPU executes software commands. EW0 mode:	dedicated serial programmer. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2:	ROM areas are rewritten using a dedicated parallel programmer.	The user ROM area is rewritten busing a dedicated CAN programmer.
Areas which can be Rewritten	User ROM area	User ROM area	User ROM area Boot ROM area	User ROM area
Operation	Single-chip mode	Boot mode	Parallel I/O mode	Boot mode
Mode	Boot mode (EW0 mode)			
ROM Programmer	None	Serial programmer	Parallel programmer	CAN programmer

Table 20.2 Flash Memory Rewrite Modes Overview

NOTES:

1. The PM13 bit remains set to "1" while the FMR01 bit in the FMR0 register = 1 (CPU rewrite mode enabled). The PM13 bit is reverted to its original value by setting the FMR01 bit to "0" (CPU rewrite mode disabled). However, if the PM13 bit is changed during CPU rewrite mode, its changed value is not reflected until after the FMR01 bit is set to "0".

2. When in CPU rewrite mode, the PM10 and PM13 bits in the PM1 register are set to "1". The rewrite control program can only be executed in the internal RAM area.

3. When using the standard serial I/O mode 2, make sure a main clock input oscillation frequency is set to 5 MHz, 10 MHz or 16 MHz.

20.1 Memory Map

The flash memory contains the user ROM area and a boot ROM area. The user ROM area has space to store the microcomputer operating program a separate 4-Kbyte space as the block A.

Figure 20.1 shows the block diagram of flash memory.

The user ROM area is divided into several blocks, each of which can individually be protected (locked) against programming or erasure. The user ROM area can be rewritten in all of CPU rewrite, standard serial I/O mode, parallel I/O mode and CAN I/O mode. Block A is enabled for use by setting the PM10 bit in the PM1 register to "1" (block A enabled).

The boot ROM area is located at the same addresses as the user ROM area. It can only be rewritten in parallel I/O mode (refer to **20.1.1 Boot Mode**). A program in the boot ROM area is executed after a hardware reset occurs while an "H" signal is applied to the CNVSS and P5_0 pins and an "L" signal is applied to the P5_5 pin (refer to **20.1.1 Boot Mode**). A program in the user ROM area is executed after a hardware reset occurs while an "L" signal is applied to the CNVSS pin. However, the boot ROM area cannot be read.

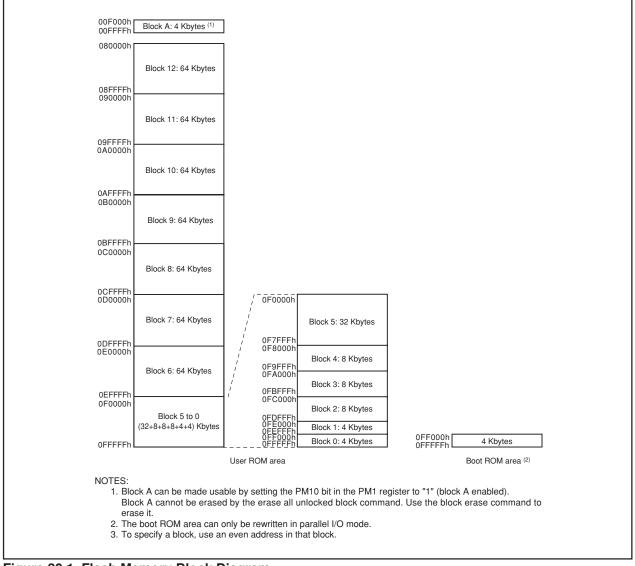


Figure 20.1 Flash Memory Block Diagram

20.1.1 Boot Mode

The microcomputer enters boot mode when a hardware reset occurs while an "H " signal is applied to the CNVSS and P5_0 pins and an "L " signal is applied to the P5_5 pin. A program in the boot ROM area is executed.

In boot mode, the FMR05 bit in the FMR0 register selects access to the boot ROM area or the user ROM area.

The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. The boot ROM area can be rewritten in parallel I/O mode only. If any rewrite control program using erase-write mode (EW0 mode) is written in the boot ROM area, the flash memory can be rewritten according to the system implemented.

20.2 Functions to Prevent Flash Memory from Rewriting

The flash memory has a built-in ROM code protect function for parallel I/O mode and a built-in ID code check function for standard serial I/O mode and CAN I/O mode to prevent the flash memory from reading or rewriting.

20.2.1 ROM Code Protect Function

The ROM code protect function inhibits the flash memory from being read or rewritten during parallel I/O mode. Figure 20.2 shows the ROMCP register. The ROMCP register is located in the user ROM area. The ROM code protect function is enabled when the ROMCR bits are set to other than "11b". In this case, set the bit 5 to bit 0 to "111111b".

When exiting ROM code protect, erase the block including the ROMCP register by the CPU rewrite mode or the standard serial I/O mode or CAN I/O mode.

20.2.2 ID Code Check Function

Use the ID code check function in standard serial I/O mode and CAN I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFFFh", ID codes are not compared, allowing all commands to be accepted. The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFEFh, 0FFFF7h, and 0FFFFBh. The flash memory must have a program with the ID codes set in these addresses.

Figure 20.3 shows the ID code store addresses.

b7 b6 b5 b4 b3 b2 b1 b0 1 1 1 1 1 1 1 1 1 1 1 1	Symbol ROMC		lue when Shipped FFh ⁽¹⁾	
	Bit Symbol	Bit Name	Function	RW
	(b5-b0)	Reserved Bit	Set to "1"	RW
	DOMODI	ROM Code Protect Level 1	0 0 : 0 1 : 0 1 : Protect enabled	RW
	ROMCP1	Set Bit ⁽¹⁾ ⁽²⁾ ⁽³⁾ ⁽⁴⁾	1 0 : J	RW

1. If a memory block that including ROMCP register is erased, the ROMCP register is set to "FFh".

2. If the ROMCP1 bit is set to other than "11b" (ROM code protect enabled), the flash memory is disabled against reading and rewriting in parallel I/O mode.

- 3. When the ROMCP1 bit is set to other than "11b", set the bit 5 to bit 0 to "111111b". If the bit 5 to bit 0 are set to other than "111111b", ROM code protect function may not become effective even if the RPMCP1 bit is set to other than "11b".
- 4. When exiting ROM code protect, erase the block including the ROMCP register by CPU rewrite mode or standard serial I/O or CAN I/O mode.

Figure 20.2 ROMCP Register

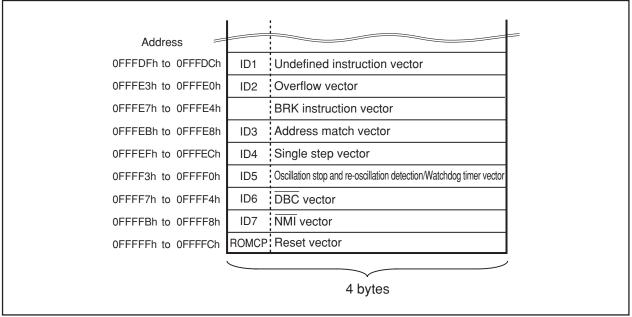


Figure 20.3 Address for ID Code Stored

20.3 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands. The user ROM area can be rewritten with the microcomputer is mounted on a board without using a parallel, serial or CAN programmer.

In CPU rewrite mode, only the user ROM area shown in Figure 20.1 can be rewritten. The boot ROM area cannot be rewritten. Program and the block erase command are executed only in the user ROM area. Erase-write 0 (EW0) mode and erase-write 1 (EW1) mode are provided as CPU rewrite mode. Table 20.3 lists the differences between EW0 and EW1 modes.

Item	EW0 Mode	EW1 Mode
Operation Mode	Single chip mode	Single chip mode
	• Boot mode	
Space where Rewrite	User ROM area	User ROM area
Control Program can be	 Boot ROM area 	
Placed		
Space where Rewrite	The rewrite control program must be	The rewrite control program can be
Control Program can be	transferred to any space other than the	executed in the user ROM area
Executed	flash memory (e.g., RAM) before being executed ⁽²⁾	
Space which can be	User ROM area	User ROM area
Rewritten		However, this excludes blocks with the
		rewrite control program
Software Command	None	Program and block erase commands
Restriction		cannot be executed in a block having
		the rewrite control program.
		Erase all unlocked block command
		cannot be executed when the lock bit in
		a block having the rewrite control program
		is set to "1" (unlocked) or when the
		FMR02 bit in the FMR0 register is set
		to "1" (lock bit disabled).
		Read status register command cannot
		be used
Modes after Program or Erasing	Read status register mode	Read array mode
CPU Status during Auto	Operating	Maintains hold state (I/O ports maintains
Write and Auto Erase		the state before the command was
		executed) ⁽¹⁾
Flash Memory Status	•Read the FMR00, FMR06 and FMR07	Read the FMR00, FMR06 and FMR07
Detection	bits in the FMR0 register by program	bits in the FMR0 register by program
	•Execute the read status register	
	command to read the SR7, SR5, and	
	SR4 bits in the status register	

Table 20.3	EW0 Mode	and EW1	Mode

NOTES:

1. Do not generate an interrupts (except NMI and watchdog timer interrupts) and DMA transfer.

2. When in CPU rewrite mode, the PM10 and PM13 bits in the PM1 register are set to "1". The rewrite control program can only be executed in the internal RAM area.

20.3.1 EW0 Mode

The microcomputer enters CPU rewrite mode by setting the FMR01 bit in the FMR0 register to "1" (CPU rewrite mode enabled) and is ready to accept commands. EW0 mode is selected by setting the FMR11 bit in the FMR1 register to "0". To set the FMR01 bit to "1", set to "1" after first writing "0".

The software commands control programming and erasing. The FMR0 register or the status register indicates whether a program or erase operation is completed as expected or not.

20.3.2 EW1 Mode

EW1 mode is selected by setting FMR11 bit to "1" (by writing "0" and then "1" in succession) after setting the FMR01 bit to "1" (by writing "0" and then "1" in succession). (Both bits must be set to "0" first before setting to "1".)

The FMR0 register indicates whether or not a program or erase operation has been completed as expected. The status register cannot be read in EW1 mode.

20.3.3 FMR0, FMR1 Registers

Figure 20.4 shows FMR0 and FMR1 registers.

7 b6 b5	64 b3	b2 b1 b0	Symbol FMR0	Address 01B7h	After Reset 00000001b	
			Bit Symbol	Bit Name	Function	RW
			FMR00	RY/BY Status Flag	0 : Busy (being written or erased) ⁽¹⁾ 1 : Ready	RO
			FMR01	CPU Rewrite Mode Select Bit ⁽²⁾	0 : Disables CPU rewrite mode 1 : Enables CPU rewrite mode	RW
			FMR02	Lock Bit Disable Select Bit ⁽³⁾	0: Enables lock bit 1: Disables lock bit	RW
			FMSTP	Flash Memory Stop Bit ^{(4) (5)}	0 Enables flash memory operation 1: Stops flash memory operation (placed in low power dissipation mode, flash memory initialized)	RW
	¦		(b4)	Reserved Bit	Set to "0"	RW
			FMR05	User ROM Area Select Bit ⁽⁴⁾ (Effective in only boot mode)	0 : Boot ROM area is accessed 1 : User ROM area is accessed	RW
·			FMR06	Program Status Flag (6)	0 : Terminated normally 1 : Terminated in error	RO
			FMR07	Erase Status Flag (6)	0 : Terminated normally 1 : Terminated in error	RO

NOTES:

1. This status includes writing or reading with the lock bit program or read lock bit status command.

2. To set this bit to "1", write "0" and then "1" in succession. Make sure no interrupts or no DMA transfers will occur before writing "1" after writing "0".

Write to this bit when the $\overline{\text{NMI}}$ pin is in the high state. Also, while in EW0 mode, write to this bit from a program in other than the flash memory.

To set this bit to "0", in a read array mode.

3. To set this bit to "1", write "0" and then "1" in succession when the FMR01 bit = 1. Make sure no interrupts or no DMA transfers will occur before writing "1" after writing "0".

4. Write to this bit from a program in other than the flash memory.

5. Effective when the FMR01 bit = 1 (CPU rewrite mode). If the FMR01 bit = 0, although the FMSTP bit can be set to "1" by writing "1" in a program, the flash memory is neither placed in lo power dissipation state nor initialized.

6. This bit is set to "0" by executing the clear status command.

Flash Memory Control Register 1

b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0	Symbol FMR1	Address 01B5h	After Reset 0X00XX0Xb	
	Bit Symbol	Bit Name	Function	RW
	(b0)	Reserved Bit	The value in this bit when read is indeterminate.	RO
	FMR11	EW1 Mode Select Bit (1)	0 : EW0 mode 1 : EW1 mode	RW
	(b3-b2)	Reserved Bit	The value in this bit when read is indeterminate.	RO
	(b5-b4)	Reserved Bit	Set to "0"	RW
	FMR16	Lock Bit Status Flag	0 : Lock 1 : Unlock	RO
·	(b7)	Reserved Bit	Set to "0"	RW

NOTE:

1. To set this bit to "1", write "0" and then "1" in succession when the FMR01 bit in the FMR0 register = 1. Make sure no interrupts or no DMA transfers will occur before writing "1" after writing "0".

Write to this bit when the NMI pin is in the high state.

The FMR01 and FMR11 bits both are set to "0" by setting the FMR01 bit to "0".

Figure 20.4 FMR0 Register and FMR1 Register

20.3.3.1 FMR00 Bit

This bit indicates the flash memory operating status. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

20.3.3.2 FMR01 Bit

The microcomputer can accept commands when the FMR01 bit is set to "1" (CPU rewrite mode). Set the FMR05 bit to "1" (user ROM area access) as well if in boot mode.

20.3.3.3 FMR02 Bit

The lock bit is disabled by setting the FMR02 bit to "1" (lock bit disabled). (Refer to **20.3.6 Data Protect Function**.) The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled).

The FMR02 bit does not change the lock bit status but disables the lock bit function. If the block erase or erase all unlocked block command is executed when the FMR02 bit is set to "1", the lock bit status changes "0" (locked) to "1" (unlocked) after command execution is completed.

20.3.3.4 FMSTP Bit

This bit resets the flash memory control circuits and minimizes power consumption in the flash memory. Access to the flash memory is disabled when the FMSTP bit is set to "1". Set the FMSTP bit by program in a space other than the flash memory.

Set the FMSTP bit to "1" if one of the followings occurs:

• A flash memory access error occurs while erasing or programming in EW0 mode (FMR00 bit does not switch back to "1" (ready))

• Low power dissipation mode or on-chip oscillator low power dissipation mode is entered

Figure 20.7 shows a flow chart illustrating how to start and stop the flash memory before and after entering low power dissipation mode. Follow the procedure on this flow chart.

When entering stop or wait mode, the flash memory is automatically turned off. When exiting stop or wait mode, the flash memory is turned back on. The FMR0 register does not need to be set.

20.3.3.5 FMR05 Bit

This bit selects the boot ROM or user ROM area in boot mode. Set to "0" to access (read) the boot ROM area or to "1" (user ROM access) to access (read, write or erase) the user ROM area.

20.3.3.6 FMR06 Bit

This is a read-only bit indicating an auto program operation state. The FMR06 bit is set to "1" when a program error occurs; otherwise, it is set to "0". Refer to **20.3.8 Full Status Check**.

20.3.3.7 FMR07 Bit

This is a read-only bit indicating the auto erase operation status. The FMR07 bit is set to "1" when an erase error occurs; otherwise, it is set to "0". For details, refer to **20.3.8 Full Status Check**.

20.3.3.8 FMR11 Bit

EW0 mode is entered by setting the FMR11 bit to "0" (EW0 mode). EW1 mode is entered by setting the FMR11 bit to "1" (EW1 mode).

20.3.3.9 FMR16 Bit

This is a read-only bit indicating the execution result of the read lock bit status command. When the block, where the read lock bit status command is executed, is locked, the FMR16 bit is set to "0". When the block, where the read lock bit status command is executed, is unlocked, the FMR16 bit is set to "1".

Figure 20.5 shows how to enter and exit EW0 mode. Figure 20.6 show how to enter and exit EW1 mode.

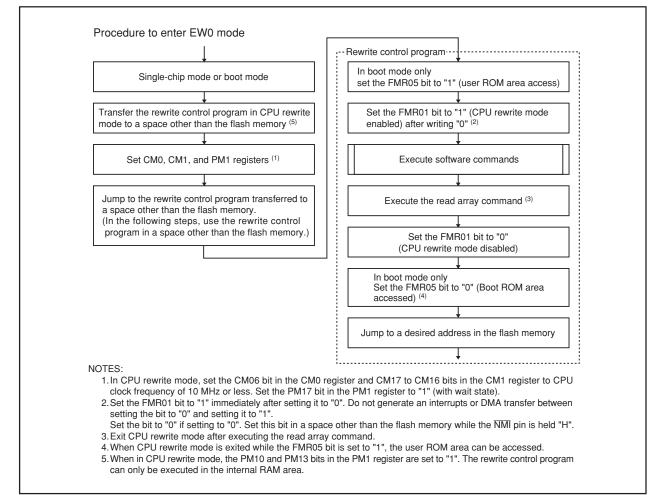
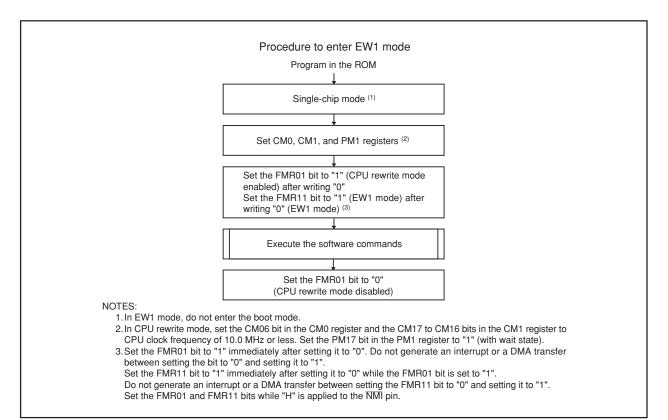



Figure 20.5 Setting and Resetting of EW0 Mode

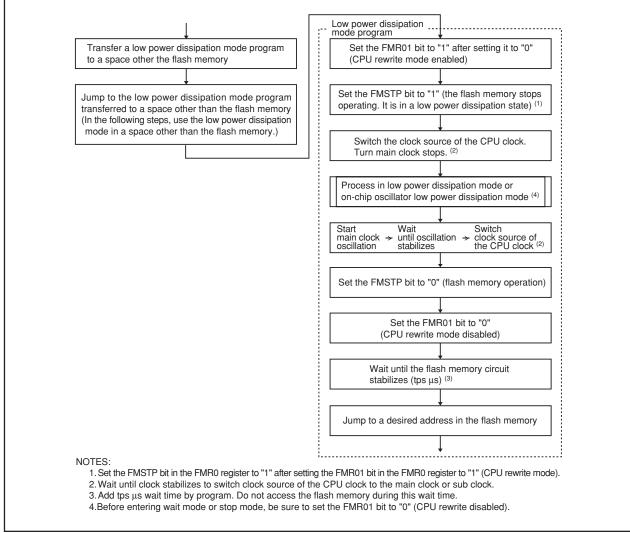


Figure 20.7 Processing Before and After Low Power Dissipation Mode

20.3.4 Precautions on CPU Rewrite Mode

20.3.4.1 Operating Speed

Set the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register to clock frequency of 10 MHz or less before entering CPU rewrite mode (EW0 or EW1 mode). Also, set the PM17 bit in the PM1 register to "1" (with wait state).

20.3.4.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because the CPU tries to read data in flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

20.3.4.3 Interrupts (EW0 Mode)

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The NMI and watchdog timer interrupts are available since the FMR0 and FMR1 registers are forcibly reset when either interrupt request is generated. Allocate the jump addresses for each interrupt service routines to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt request is generated. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

20.3.4.4 Interrupts (EW1 Mode)

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during the auto program or auto erase period.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since the FMR0 and FMR1 registers are forcibly reset when the interrupt request is generated. Allocate the jump address for the interrupt service routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI interrupt request is generated. Execute the rewrite program again after exiting the interrupt service routine.

20.3.4.5 How to Access

To set the FMR01, FMR02 or FMR11 bit to "1", write "1" after first setting the bit to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while an "H" signal is applied to the $\overline{\text{NMI}}$ pin.

20.3.4.6 Rewriting in User ROM Area (EW0 Mode)

The supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode or CAN I/O mode.

20.3.4.7 Rewriting in User ROM Area (EW1 Mode)

Avoid rewriting any block in which the rewrite control program is stored.

20.3.4.8 DMA Transfer

In EW1 mode, do not perform a DMA transfer while the FMR00 bit in the FMR0 register is set to "0" (auto programming or auto erasing).

20.3.4.9 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

20.3.4.10 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

20.3.4.11 Stop Mode

When entering stop mode, the following settings are required:

JMP.B

- Set the FMR01 bit to "0" (CPU rewrite mode disabled). Disable DMA transfer before setting the CM10 bit to "1" (stop mode).
- Execute the instruction to set the CM10 bit to "1" (stop mode) and then the JMP.B instruction.

Example program BSET

0, CM1 ; Stop mode

L1:

Program after exiting stop mode

L1

20.3.4.12 Low Power Dissipation Mode and On-chip Oscillator Low Power Dissipation Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Erase all unlocked blocks
- · Lock bit program software command
- Read lock bit status

20.3.5 Software Commands

Software commands are described below. The command code and data must be read and written in 16-bit unit, to and from even addresses in the user ROM area. When writing command code, the high-order 8 bits (D15 to D8) are ignored.

Table 20.4 lists the software commands.

Table 20.4 Software Commands

	Fi	First Bus Cycle			Second Bus Cycle		
Software Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)	
Read Array	Write	×	xxFFh	-	-	-	
Read Status Register	Write	×	xx70h	Read	×	SRD	
Clear Status Register	Write	×	xx50h	-	-	-	
Program	Write	WA	xx40h	Write	WA	WD	
Block Erase	Write	×	xx20h	Write	BA	xxD0h	
Erase All Unlocked Block (1)	Write	×	xxA7h	Write	×	xxD0h	
Lock Bit Program	Write	BA	xx77h	Write	BA	xxD0h	
Read Lock Bit Status	Write	×	xx71h	Write	BA	xxD0h	

SRD:data in SRD register (D7 to D0)

WA: Address to be written (The address specified in the first bus cycle is the same even address as the address specified in the second bus cycle.)

WD: 16-bit write data

BA: Highest-order block address (must be an even address)

X: Any even address in the user ROM area

xx: High-order 8 bits of command code (ignored)

NOTE

1. It is only blocks 0 to 12 that can be erased by the erase all unlocked block command. Block A cannot be erased. The block erase command must be used to erase the block A.

20.3.5.1 Read Array Command (FFh)

The read array command reads the flash memory.

By writing command code "xxFFh" in the first bus cycle, read array mode is entered. Content of a specified address can be read in 16-bit unit after the next bus cycle.

The microcomputer remains in read array mode until another command is written. Therefore, contents from multiple addresses can be read consecutively.

20.3.5.2 Read Status Register Command (70h)

The read status register command reads the status register (refer to **20.3.7 Status Register (SRD Register)** for detail).

By writing command code "xx70h" in the first bus cycle, the status register can be read in the second bus cycle. Read an even address in the user ROM area.

Do not execute this command in EW1 mode.

20.3.5.3 Clear Status Register Command (50h)

The clear status register command clears the status register.

By writing "xx50h" in the first bus cycle, the FMR07, FMR06 bits in the FMR0 register are set to "00b" and the SR5, SR4 bits in the status register are set to "00b".

20.3.5.4 Program Command (40h)

The program command writes 2-byte data to the flash memory.

By writing "xx40h" in the first bus cycle and data to the write address in the second bus cycle, an auto program operation (data program and verify) will start. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether an auto program operation has been completed. The FMR00 bit is set to "0" (busy) during auto program and to "1" (ready) when an auto program operation is completed.

After the completion of an auto program operation, the FMR06 bit in the FMR0 register indicates whether or not the auto program operation has been completed as expected. (Refer to **20.3.8 Full Status Check.**)

An address that is already written cannot be altered or rewritten.

Figure 20.8 shows a flow chart of the program command programming.

The lock bit protects each block from being programmed inadvertently. (Refer to **20.3.6 Data Protect Function.**)

In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the microcomputer enters read status register mode as soon as an auto program operation starts. The status register can be read. The SR7 bit in the status register is set to "0" at the same time an auto program operation starts. It is set to "1" when auto program operation is completed. The microcomputer remains in read status register mode until the read array command is written. After completion of an auto program operation, the status register indicates whether or not the auto program operation has been completed as expected.

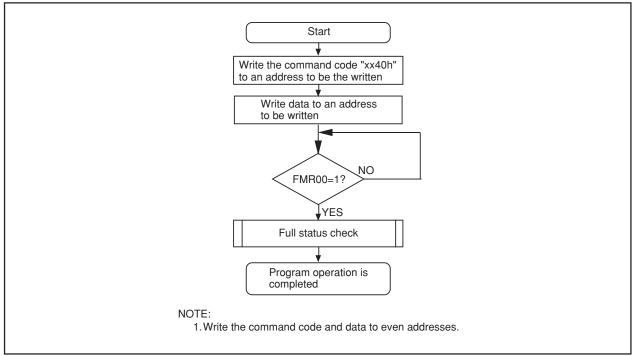


Figure 20.8 Program Command

20.3.5.5 Block Erase Command

The block erase command erases each block.

By writing "xx20h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, an auto erase operation (erase and verify) will start in the specified block.

The FMR00 bit in the FMR0 register indicates whether an auto erase operation has been completed.

The FMR00 bit is set to "0" (busy) during auto erase and to "1" (ready) when the auto erase operation is completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected. (Refer to **20.3.8 Full Status Check**.) Figure 20.9 shows a flow chart of the block erase command programming.

The lock bit protects each block from being programmed inadvertently. (Refer to **20.3.6 Data Protect Function**.)

In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the microcomputer enters read status register mode as soon as an auto erase operation starts. The status register can be read. The SR7 bit in the status register is set to "0" at the same time an auto erase operation starts. It is set to "1" when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written.

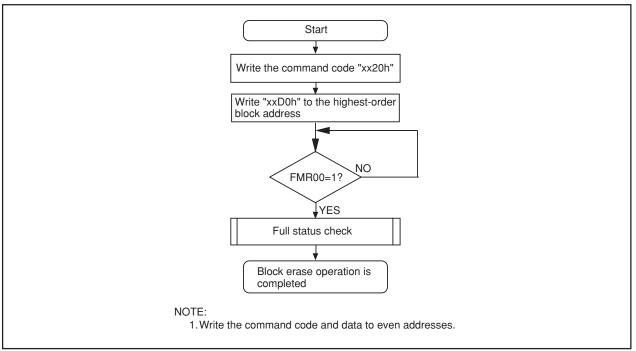


Figure 20.9 Block Erase Command

20.3.5.6 Erase All Unlocked Block

The erase all unlocked block command erases all blocks except the block A.

By writing "xxA7h" in the first bus cycle and "xxD0h" in the second bus cycle, an auto erase (erase and verify) operation will run continuously in all blocks except the block A.

The FMR00 bit in the FMR0 register indicates whether an auto erase operation has been completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected.

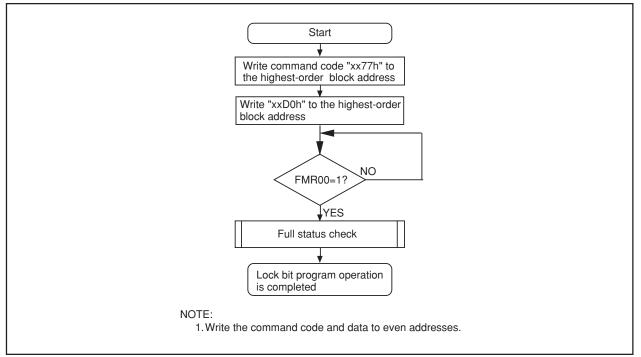
The lock bit can protect each block from being programmed inadvertently. (Refer to **20.3.6 Data Protect Function**.)

In EW1 mode, do not execute this command when the lock bit for any block storing the rewrite control program is set to "1" (unlocked) or when the FMR02 bit in the FMR0 register is set to "1" (lock bit disabled).

In EW0 mode, the microcomputer enters read status register mode as soon as an auto erase operation starts. The status register can be read. The SR7 bit in the status register is set to "0" (busy) at the same time an auto erase operation starts. It is set to "1" (ready) when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written.

Only blocks 0 to 12 can be erased by the erase all unlocked block command. The block A cannot be erased. Use the block erase command to erase the block A.

20.3.5.7 Lock Bit Program Command


The lock bit program command sets the lock bit for a specified block to "0" (locked).

By writing "xx77h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to "0". The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

Figure 20.10 shows a flow chart of the lock bit program command programming. Execute read lock bit status command to read lock bit state (lock bit data).

The FMR00 bit in the FMR0 register indicates whether a lock bit program operation is completed.

Refer to 20.3.6 Data Protect Function for details on lock bit functions and how to set it to "1" (unlocked).

20.3.5.8 Read Lock Bit Status Command (71h)

The read lock bit status command reads the lock bit state of a specified block.

By writing "xx71h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the FMR16 bit in the FMR1 register stores information on whether or not the lock bit of a specified block is locked. Read the FMR16 bit after the FMR00 bit in the FMR0 register is set to "1" (ready).

Figure 20.11 shows a flow chart of the read lock bit status command programming.

Figure 20.11 Read Lock Bit Status Command

20.3.6 Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit in the FMR0 register to "0" (lock bit enabled). The lock bit allows each block to be individually protected (locked) against program and erase. This helps prevent data from being inadvertently written to or erased from the flash memory.

- When the lock bit status is set to "0", the block is locked (block is protected against program and erase).
- When the lock bit status is set to "1", the block is not locked (block can be programmed or erased).

The lock bit status is set to "0" (locked) by executing the lock bit program command and to "1" (unlocked) by erasing the block. The lock bit status cannot be set to "1" by any commands. The lock bit status can be read by the read lock bit status command.

The lock bit function is disabled by setting the FMR02 bit to "1". All blocks are unlocked. However, individual lock bit status remains unchanged. The lock bit function is enabled by setting the FMR02 bit to "0". Lock bit status is retained.

If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to "1", the target block or all blocks are erased regardless of lock bit status. The lock bit status of each block are set to "1" after an erase operation is completed.

Refer to 20.3.5 Software Commands for details on each command.

20.3.7 Status Register (SRD Register)

The status register indicates the flash memory operation state and whether or not an erase or program operation is completed as expected. The FMR00, FMR06 and FMR07 bits in the FMR0 register indicate status register states.

Table 20.5 shows the status register.

In EW0 mode, the status register can be read when the followings occur.

- Any even address in the user ROM area is read after writing the read status register command
- Any even address in the user ROM area is read from when the program, block erase, erase all unlocked block, or lock bit program command is executed until when the read array command is executed.

20.3.7.1 Sequencer Status (SR7 and FMR00 Bits)

The sequence status indicates the flash memory operation state. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

20.3.7.2 Erase Status (SR5 and FMR07 Bits)

Refer to 20.3.8 Full Status Check.

20.3.7.3 Program Status (SR4 and FMR06 Bits)

Refer to 20.3.8 Full Status Check.

Table 20.5 Status Register

Bits in Status	Bits in FMR0	Status Name	Cont	ents	Value after
Register	Register	Status Name	"0"	"1"	Reset
SR7 (D7)	FMR00	Sequencer status	Busy	Ready	1
SR6 (D6)	-	Reserved	-	-	-
SR5 (D5)	FMR07	Erase status	Terminated normally	Terminated in error	0
SR4 (D4)	FMR06	Program status	Terminated normally	Terminated in error	0
SR3 (D3)	-	Reserved	-	-	-
SR2 (D2)	-	Reserved	-	-	-
SR1 (D1)	-	Reserved	-	-	-
SR0 (D0)	-	Reserved	-	-	-

D7 to D0: These data bus are read when the read status register command is executed. NOTE:

1. The FMR07 bit (SR5) and FMR06 bit (SR4) are set to "0" by executing the clear status register command. When the FMR07 bit (SR5) or FMR06 bit (SR4) is set to "1", the program, block erase, erase all unlocked block, and lock bit program commands are not accepted.

20.3.8 Full Status Check

If an error occurs when a program or erase operation is completed, the FMR06, FMR07 bits in the FMR0 register are set to "1", indicating a specific error. Therefore, execution results can be confirmed by checking these bits (full status check).

Table 20.6 lists errors and FMR0 register state. Figure 20.12 shows a flow chart of the full status check and handling procedure for each error.

FRM00 Register (Status Register) Status FMR07 bit FMR06 bit		Error	Error Occurrence Conditions			
(SR5)	(SR4)					
1	1	Command	 Command is written incorrectly 			
		Sequence	• A value other than "xxD0h" or "xxFFh" is written in the second			
		error	bus cycle of the lock bit program, block erase or erase all unlocked block command ⁽¹⁾			
1	0	Erase error	\bullet The block erase command is executed on a locked block $^{(2)}$			
			• The block erase or erase all unlocked block command is			
			executed on an unlock block and auto erase operation is not			
			completed as expected			
0	1	Program error	The program command is executed on locked blocks ⁽²⁾			
			The program command is executed on unlocked blocks but			
			program operation is not completed as expected			
			 The lock bit program command is executed but program 			
			operation is not completed as expected			

Table 20.6	Errors and	FMR0	Register	Status
------------	------------	------	----------	--------

NOTES:

1. The flash memory enters read array mode by writing command code "xxFFh" in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.

2. When the FMR02 bit in the FMR0 register is set to "1" (lock bit disabled), no error occurs even under the conditions above.

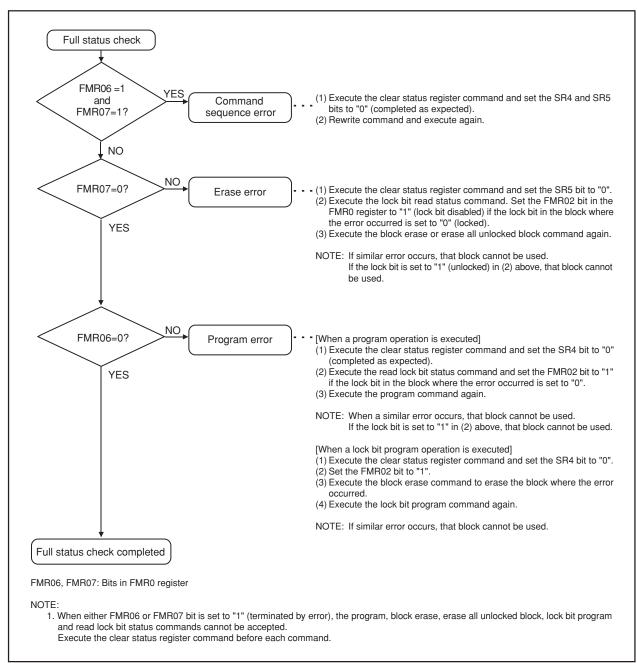


Figure 20.12 Full Status Check and Handling Procedure for Each Error

20.4 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the M16C/6N Group (M16C/6NL, M16C/ 6NN) can be used to rewrite the flash memory user ROM area in the microcomputer mounted on a board. For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Table 20.7 lists pin functions for standard serial I/O mode. Figures 20.13 and 20.14 show pin connections for standard serial I/O mode.

20.4.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer matches those written in the flash memory. (Refer to **20.2 Functions to Prevent Flash Memory from Rewriting**.)

Table 20.7 Pin Functions for Standard Serial I/O Mode

Pin	Name	I/O	Description
VCC1, VCC2, VSS	Power supply		Apply the voltage guaranteed for Program and Erase to VCC1 pin
	input		and VCC2 to VCC2 pin. The VCC apply condition is that VCC2 =
			VCC1. Apply 0 V to VSS pin.
CNVSS	CNVSS	Ι	Connect to VCC1 pin.
RESET	Reset input	I	Reset input pin. While RESET pin is "L" level, input 20 cycles or
			longer clock to XIN pin.
XIN	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and
XOUT	Clock output	0	XOUT pins. To input an externally generated clock, input it to XIN
			pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to VCC1 or VSS.
AVCC, AVSS	Analog power		Connect AVCC to VCC1 and AVSS to VSS, respectively.
	supply input		
VREF	Reference	I	Enter the reference voltage for A/D and D/A converters from this
	voltage input		pin.
P0_0 to P0_7	Input port P0	I	Input "H" or "L" level signal or open.
P1_0 to P1_7	Input port P1	I	Input "H" or "L" level signal or open.
P2_0 to P2_7	Input port P2	Ι	Input "H" or "L" level signal or open.
P3_0 to P3_7	Input port P3	I	Input "H" or "L" level signal or open.
P4_0 to P4_7	Input port P4	I	Input "H" or "L" level signal or open.
P5_0	CE input	I	Input "H" level signal.
P5_1 to P5_4,	Input port P5	I	Input "H" or "L" level signal or open.
P5_6, P5_7			
P5_5	EPM input	I	Input "L" level signal.
P6_0 to P6_3	Input port P6	I	Input "H" or "L" level signal or open.
P6_4/RTS1	BUSY output	0	Standard serial I/O mode 1: BUSY signal output pin
			Standard serial I/O mode 2: Monitors the boot program operation
			check signal output pin.
P6_5/CLK1	SCLK input	I	Standard serial I/O mode 1: Serial clock input pin.
			Standard serial I/O mode 2: Input "L".
P6_6/RXD1	RXD input	I	Serial data input pin
P6_7/TXD1	TXD output	0	Serial data output pin ⁽¹⁾
P7_0 to P7_7	Input port P7	I	Input "H" or "L" level signal or open.
P8_0 to P8_4,	Input port P8	I	Input "H" or "L" level signal or open.
P8_6, P8_7			
P8_5/NMI	NMI input	I	Connect this pin to VCC1.
P9_0 to P9_4, P9_7	Input port P9	I	Input "H" or "L" level signal or open.
P9_5/CRX0	CRX input	I	Input "H" or "L" level signal or connect to a CAN transceiver.
P9_6/CTX0	CTX output	0	Input "H" level signal, open or connect to a CAN transceiver.
P10_0 to P10_7	Input port P10	I	Input "H" or "L" level signal or open.
P11_0 to P11_7 (2)	Input port P11	I	Input "H" or "L" level signal or open.
P12_0 to P12_7 (2)	Input port P12	I	Input "H" or "L" level signal or open.
P13_0 to P13_7 (2)	Input port P13	I	Input "H" or "L" level signal or open.
	· · ·		Input "H" or "L" level signal or open.

NOTES:

- When using standard serial I/O mode 1, the TXD pin must be held high while the RESET pin is pulled low. Therefore, connect this pin to VCC1 via a resistor. Because this pin is directed for data output after reset, adjust the pull-up resistance value in the system so that data transfers will not be affected.
 The pine pide test of the dot pine varies.
- 2. The pins P11 to P14 are only in the 128-pin version.

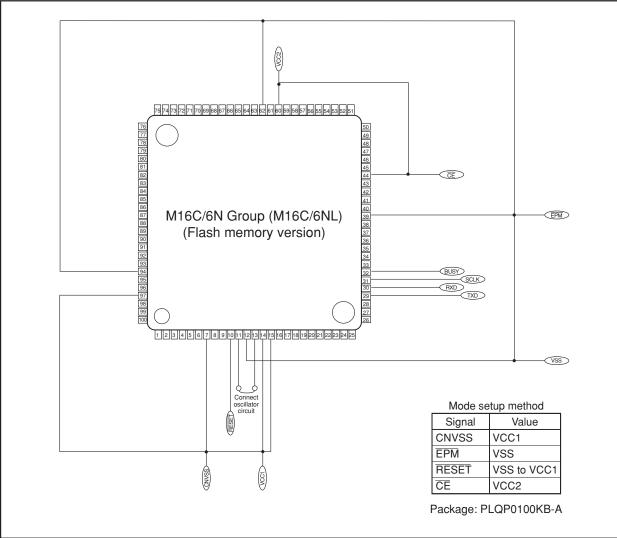


Figure 20.13 Pin Connections for Standard Serial I/O Mode (1)

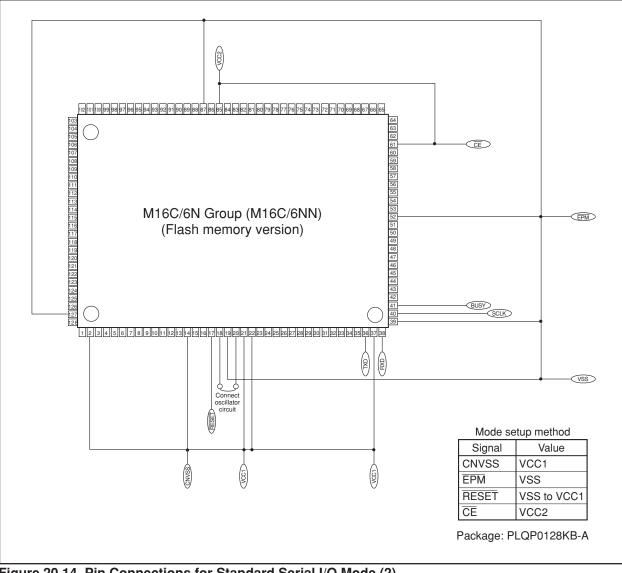


Figure 20.14 Pin Connections for Standard Serial I/O Mode (2)

20.4.2 Example of Circuit Application in Standard Serial I/O Mode

Figures 20.15 and 20.16 show example of circuit application in standard serial I/O mode 1 and mode 2, respectively. Refer to the user's manual of your serial programmer to handle pins controlled by a serial programmer.

Note that when using the standard serial I/O mode 2, make sure a main clock input oscillation frequency is set to 5 MHz, 10 MHz or 16 MHz.

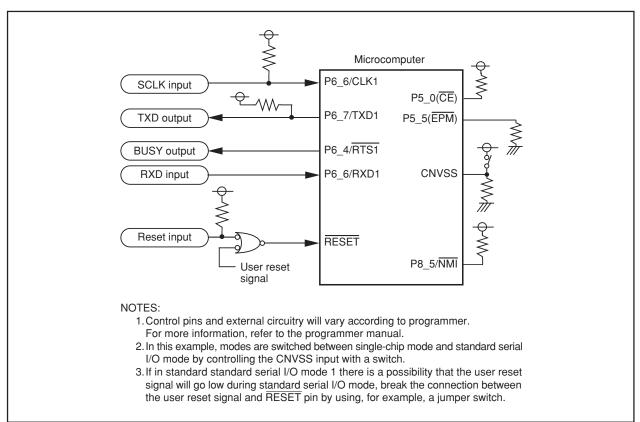


Figure 20.15 Circuit Application in Standard Serial I/O Mode 1

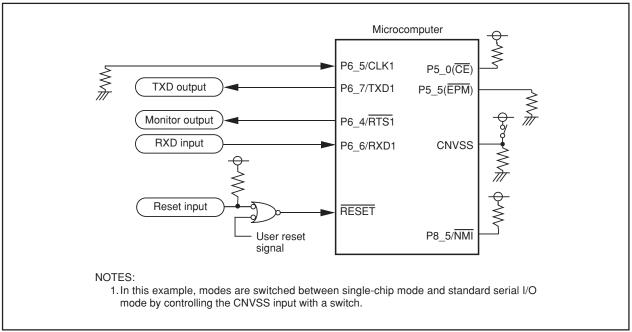


Figure 20.16 Circuit Application in Standard Serial I/O Mode 2

20.5 Parallel I/O Mode

In parallel I/O mode, the user ROM area and the boot ROM area can be rewritten by a parallel programmer supporting the M16C/6N Group (M16C/6NL, M16C/6NN). Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

20.5.1 User ROM and Boot ROM Areas

An erase block operation in the boot ROM area is applied to only one 4-Kbyte block. The rewrite control program in standard serial I/O and CAN I/O modes are written in the boot ROM area before shipment. Do not rewrite the boot ROM area if using the serial programmer.

In parallel I/O mode, the boot ROM area is located in addresses 0FF000h to 0FFFFFh. Rewrite this address range only if rewriting the boot ROM area. (Do not access addresses other than addresses 0FF000h to 0FFFFFh.)

20.5.2 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten in parallel I/O mode. (Refer to **20.2 Functions to Prevent Flash Memory from Rewriting**.)

20.6 CAN I/O Mode

In CAN I/O mode, the CAN programmer supporting the M16C/6N Group (M16C/6NL, M16C/6NN) can be used to rewrite the flash memory user ROM area in the microcomputer mounted on a board. For more information about the CAN programmer, contact your CAN programmer manufacturer. Refer to the user's manual included with your CAN programmer for instructions.

Table 20.8 lists pin functions for CAN I/O mode. Figures 20.17 and 20.18 show pin connections for CAN I/O mode.

20.6.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the CAN programmer matches those written in the flash memory. (Refer to 20.2 Functions to Prevent Flash Memory from Rewriting.)

Pin	Name	I/O	Description
VCC1, VCC2, VSS	Power supply		Apply the voltage guaranteed for Program and Erase to VCC1 pir
	input		and VCC2 to VCC2 pin. The VCC apply condition is that VCC2 =
			VCC1. Apply 0 V to VSS pin.
CNVSS	CNVSS	I	Connect to VCC1 pin.
RESET	Reset input	I	Reset input pin. While RESET pin is "L" level, input 20 cycles of
			longer clock to XIN pin.
XIN	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and
XOUT	Clock output	0	XOUT pins. To input an externally generated clock, input it to XIN
			pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to VCC1 or VSS.
AVCC, AVSS	Analog power		Connect AVCC to VCC1 and AVSS to VSS, respectively.
	supply input		
VREF	Reference	I	Enter the reference voltage for A/D and D/A converters from this
	voltage input		pin.
P0_0 to P0_7	Input port P0	I	Input "H" or "L" level signal or open.
P1_0 to P1_7	Input port P1	I	Input "H" or "L" level signal or open.
P2_0 to P2_7	Input port P2	I	Input "H" or "L" level signal or open.
P3_0 to P3_7	Input port P3	I	Input "H" or "L" level signal or open.
P4_0 to P4_7	Input port P4	I	Input "H" or "L" level signal or open.
P5_0	CE input	I	Input "H" level signal.
P5_1 to P5_4,	Input port P5	I	Input "H" or "L" level signal or open.
P5_6, P5_7			
P5_5	EPM input	I	Input "L" level signal.
P6_0 to P6_4, P6_6	Input port P6	I	Input "H" or "L" level signal or open.
P6_5/CLK1	SCLK input	I	Input "L" level signal.
P6_7/TXD1	TXD output	0	Input "H" level signal.
P7_0 to P7_7	Input port P7	I	Input "H" or "L" level signal or open.
P8_0 to P8_4,	Input port P8	I	Input "H" or "L" level signal or open.
P8_6, P8_7			
P8_5/NMI	NMI input	I	Connect this pin to VCC1.
P9_0 to P9_4, P9_7	Input port P9	I	Input "H" or "L" level signal or open.
P9_5/CRX0	CRX input	I	Connect to a CAN transceiver.
P9_6/CTX0	CTX output	0	Connect to a CAN transceiver.
P10_0 to P10_7	Input port P10	I	Input "H" or "L" level signal or open.
P11_0 to P11_7 (1)	Input port P11	I	Input "H" or "L" level signal or open.
P12_0 to P12_7 (1)	Input port P12	I	Input "H" or "L" level signal or open.
P13_0 to P13_7 (1)	Input port P13	I	Input "H" or "L" level signal or open.
P14_0, P14_1 (1)	Input port P14	I	Input "H" or "L" level signal or open.
NOTE:			

Table 20.8 Pin Functions for CAN I/O Mode

1. The pins P11 to P14 are only in the 128-pin version.

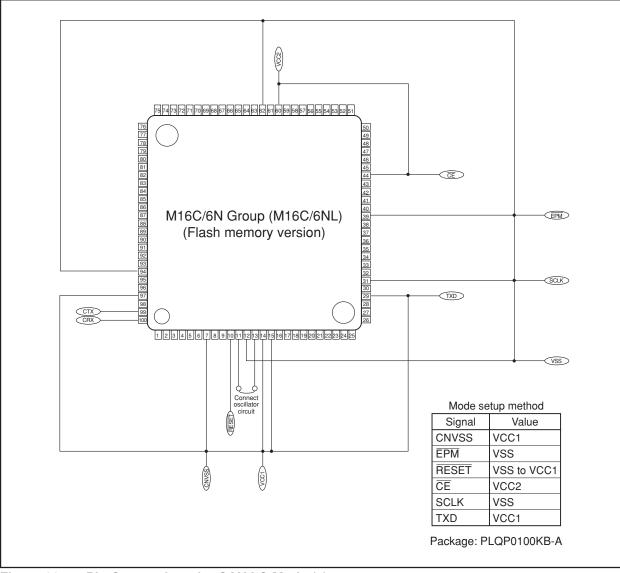


Figure 20.17 Pin Connections for CAN I/O Mode (1)

Figure 20.18 Pin Connections for CAN I/O Mode (2)

20.6.2 Example of Circuit Application in CAN I/O Mode

Figure 20.19 shows example of circuit application in CAN I/O mode. Refer to the user's manual of your CAN programmer to handle pins controlled by a CAN programmer.

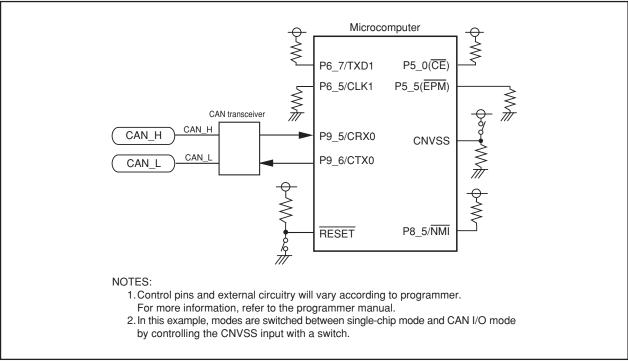


Figure 20.19 Circuit Application in CAN I/O Mode

21. Electrical Characteristics

Table 21.1	Absolute	Maximum	Ratings
------------	----------	---------	---------

Symbol			Parameter	Condition	Rated Value	Unit
Vcc	Supply Vo	ltage (VC	C1 = VCC2)	VCC = AVCC	-0.3 to 6.5	V
AVcc	Analog Su	upply Volt	age	VCC = AVCC	-0.3 to 6.5	V
Vı	Input		CNVSS, BYTE,		-0.3 to VCC+0.3	V
	Voltage		P0_7, P1_0 to P1_7, P2_0 to P2_7,			
		P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to F	6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7,			
		P9_0, P	9_2 to P9_7, P10_0 to P10_7,			
		P11_0 to	P11_7, P12_0 to P12_7, P13_0 to P13_7,			
		P14_0, I	P14_1, VREF, XIN			
		P7_1, P	9_1		-0.3 to 6.5	V
Vo	Output	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,		-0.3 to VCC+0.3	V
	Voltage	P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to	P6_7, P7_0, P7_2 to P7_7,			
		P8_0 to F	P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,			
		P10_0 to	P10_7, P11_0 to P11_7, P12_0 to P12_7,			
		P13_0 to	P13_7, P14_0, P14_1, XOUT			
		P7_1, P			-0.3 to 6.5	V
Pd	Power Dis	sipation		Topr = 25°C	700	mW
Topr	Operating	Ambient	When the Microcomputer is Operating		-40 to 85	°C
	Temperat	ure	Flash Program Erase		0 to 60	
Tstg	Storage T	emperatu	re		-65 to 150	°C

NOTE:

1. Ports P11 to P14 are only in the 128-pin version.

Symbol	Parameter			Unit		
Symbol		Falameter	Min.	Тур.	Max.	Unit
Vcc	Supply Volta	age (VCC1 = VCC2)	3.0	5.0	5.5	V
AVcc	Analog Supp	bly Voltage		Vcc		V
Vss	Supply Volta	age		0		V
AVss	Analog Supp	bly Voltage		0		V
VIH	HIGH Input	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,	0.8Vcc		Vcc	V
	Voltage	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7,				
		P8_0 to P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,				
		P14_0, P14_1, XIN, RESET, CNVSS, BYTE				
		P7_1, P9_1	0.8Vcc		6.5	V
VIL	LOW Input	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,	0		0.2Vcc	V
	Voltage	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,				
		P14_0, P14_1, XIN, RESET, CNVSS, BYTE				
OH(peak)	HIGH Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA
	Output Curren	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to				
		P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0				
		to P13_7, P14_0, P14_1				
OH(avg)	HIGH Average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-5.0	mA
	Output Curren	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to				
		P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0				
		to P13_7, P14_0, P14_1				
OL(peak)	LOW Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			10.0	mA
	Output Curren	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,				
		P14_0, P14_1				
OL(avg)	LOW Average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			5.0	mA
	Output Curren	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,				
		P14_0, P14_1				

NOTES:

1. Referenced to VCC = 3.0 to 5.5V at Topr = -40 to 85° C unless otherwise specified.

2. The mean output current is the mean value within 100 ms.

3. The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14_0 and P14_1 must be 80mA max. The total IoL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12 and P13 must be 80mA max.

The total $I_{OH(peak)}$ for ports P0, P1, and P2 must be –40mA max.

The total $I_{\text{OH}(\text{peak})}$ for ports P3, P4, P5, P12 and P13 must be –40mA max.

The total $I_{\text{OH}(\text{peak})}$ for ports P6, P7 and P8_0 to P8_4 must be –40mA max.

The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0 and P14_1 must be -40mA max.

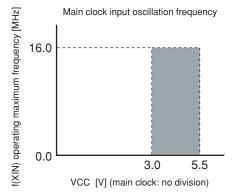

4. P11 to P14 are only in the 128-pin version.

Table 21.3 Recommended Operating Conditions (2) ⁽¹⁾

Oursels al	Demonstration				Standard		1.1
Symbol	Paramete	Parameter			Тур.	Max.	- Unit
f(XIN)	Main Clock Input Oscillation No Wait Mask	ROM Version	VCC = 3.0 to 5.5V	0		16	MHz
	Frequency ^{(2) (3) (4)} Flash	Memory Version					
f(XCIN)	Sub Clock Oscillation Frequency		32.768	50	kHz		
f(Ring)	On-chip Oscillation Frequency				1		MHz
f(PLL)	PLL Clock Oscillation Frequency					24	MHz
f(BCLK)	CPU Operation Clock		VCC = 3.0 to 5.5V	0		24	MHz
tsu(PLL)	PLL Frequency Synthesizer Stabiliza	PLL Frequency Synthesizer Stabilization Wait Time				20	ms
f(ripple)	Power Supply Ripple Allowable Freq	uency (VCC)				10	kHz
VP-P(ripple)	Power Supply Ripple Allowable Ampli	itude Voltage	VCC = 5V			0.5	V
			VCC = 3V			0.3	
$V_{\text{CC}(\Delta V/\Delta T)}$	Power Supply Ripple Rising/Falling (Gradient	VCC = 5V			0.3	V/ms
			VCC = 3V			0.3	

NOTES:

- 1. Referenced to VCC = 3.0 to 5.5V at Topr = -40 to 85° C unless otherwise specified.
- 2. Relationship between main clock oscillation frequency and supply voltage is shown right.
- 3. Execute program/erase of flash memory by VCC = 3.3 \pm 0.3 V or VCC = 5.0 \pm 0.5 V.
- 4. When using 16MHz and over, use PLL clock. PLL clock oscillation frequency which can be used is 16MHz, 20MHz or 24MHz.

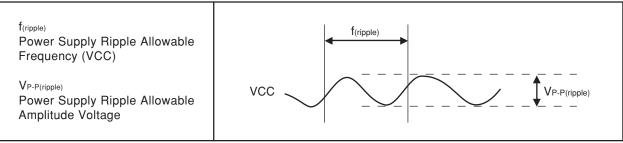


Figure 21.1 Timing of Voltage Fluctuation

Table 21.4 Electrical Characteristics (1) (1)

MIGH Output Voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P2_0 to P7_2 P0 to P1_7, P1_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P1_0 to P10_7, P1_0 to P1_1, P12_0 to P12_7, P1_0 to P10_7, P1_0 to P1_1, P12_0 to P12_7, P2_0 to P5_7, P6_0 to P6_7, P7_0, P1_2 to P7_7, P2_0 to P6_4, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P1_2 to P1_7, P2_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P10_0 to P10_7, P10_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, I to P_0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, I to P_0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P10_0 to P1_7, P12_0 to P12_7, P10_0 to P10_7, P10_0 to P1_7, P12_0 to P12_7, P10_0 to P10_7, P10_0 to P1_7, P12_0 to P12_7, P10_0 to P10_7, P10_0 to P1_7, P12_0 to P1_7, P2_0 to P2_7, P10_0 to P1_7, P12_0 to P12_7, P10_0 to P10_7, P10_0 to P1_7, P10_0 to P1_7, P2_0 to P2_7, P10_0 to P1_7, P10_0 to P1_7, P2_0 to P2_7, P10_0 to P1_7, P12_0 to P12_7, P10_0 to P10_7, P10_0 to P1_7, P10_0 to P10_7, P10_0 to P10_7, P10_0 to P1_7, P10_0 to P10_7, P10_0 to P10_7, P10_0 to P2_7, P10_0 to P1_7, P10_0 to P10_7, P10_0 to P1_7, P10_0 to P10_7, P10_0 to P10_7, P10_0 to P1_7, P10_0 to P10_7, P10_0 to P10_7, P10_0 to P2_7, P10_0 to P1_7, P2_0 to P2_7, V1_0 to P1_7, P10_0 to P1_7, P10_0 to P1_7, P2_0 to P2_7, V1_0 to P1_7, P10_0 to P1_7, P10_0 to P1_7, P2_0 to P2_7, V1_0 to P1_7, P10_0 to P1_7, P10_0 to P1_7, P2_0 to P2_7, V1_0 to V1_7, P10_0 to P1_7, P10_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, V1_0 to V1_7, P10_0 to P3_7, P10_0 to P1_7, P1_0 to P1_7, P2_	ymbol		Pa	rameter	Measuring Condition		tandar		Uni
Voltage P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P0_0 to P0_0, P6_0, P8_2, P9_0, P9_2 to P9_7, P1_0 to P1_0, P1_1 0 to P1_17, P1_2 0 to P1_27, P2_0 to P3_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P3_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P3_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_0, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P0_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to			DO O to D		Ū.	win.		Max.	V
Voit P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P6_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P1_0 to P1_7, P1_4 0, P1_4 1 Voit Voit P1_7, P1_2 to P1_7, P2_0 to P2_7, P1_4 0, P1_4 1 Voit P1_7, P1_2 to P1_7, P2_0 to P2_7, P1_4 0, P1_4 1 Voit P1_7, P1_2 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 t	он	Voltage	_		· ·	V CC-2.0		VCC	v
P8.6, P9.2, P9.2, P9.2, P9.2, P1.0, D P1.2, P11.0 b P11.7, P12.0 b P12.7, P13.0 b P13.7, P14.0, P14.1 Vol VoH HIGH Output Voltage P0.0 to P0.7, P1.0 to P1.7, P2.0 to P2.7, P6.0 to P6.7, P7.0 p2 / 2 to P2.7, P10.0 b P10.7, P10.0 b P11.7, P12.0 to P12.7, P13.0 to P13.7, P14.0, P14.1 IoH = -107A 3.0 Vor. VoH HIGH Output Voltage XOUT HIGHPOWER ILOWPOWER IoH = -107A 3.0 Vor. VoH HIGH Output Voltage XOUT HIGHPOWER ILOWPOWER IoH = -107A 3.0 Vor. VoIt UOPOUPDUT Voltage XOUT HIGHPOWER ILOWPOWER IoH = -0.57mA 3.0 Vor. Voit LOWPOWER Voltage IOH P0.7, P1.0 to P1.7, P2.0 to P2.7, Io. P3.0 to P3.7, P4.0 to P4.7, P5.0 to P5.7, P6.0 to P6.7, P7.0 to P7.7, P8.0 to P3.7, P1.0 to P11.7, P12.0 to P12.7, P10.0 to P1.0, P1.0 to P11.7, P12.0 to P12.7, P10.0 to P10.7, P10.0 to P10.7, P1.0 to P1.7, P2.0 to P2.7, P10.0 to P11.7, P12.0 to P12.7, P10.0 to P1.0, P10.0 to P11.7, P12.0 to P12.7, P10.0 to P10.7, P10.0 to P10.7, P1.0 to P1.7, P2.0 to P2.7, P10.0 to P10.7, P1.0 to P1.7, P2.0 to P2.7, P10.0 to P2.7, P1.0		Vonago	_						
PH1_0b_PH1_7, PH2_0b_PH2_7, PH3_0b_PH3_7, PH4_0, PH4_1 IoH = -200µA Voc-0.3 Voc VoH HIGH Output Voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P4_0 to P5_7, P1_2 0b_P12_7, P1_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P10_7, P14_0, P14_1 IoH = -1mA 3.0 Voc VoH HIGH Output Voltage XOUT HIGHPOWER HIGHPOWER IoH = -0.5mA 3.0 Voc Vot Votage NOUT HIGHPOWER HIGHPOWER With no load applied 1.6 Vot OUW Output Voltage XCOUT HIGHPOWER HIGHPOWER With no load applied 1.6 Vot OUW Output Voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P4_0 to P4_7, P5_0 to P5_7, P4_0 to P6_7, P7_0 to P7_7, P3_0 to P1_7, P1_0 to P11_7, P1_2 0w P12_7, P13_0 to P13_7, P1_0 to P11_7, P1_2 0w P12_7, P13_0 to P13_7, P1_0 to P11_7, P1_2 0w P12_7, P13_0 to P13_7, P1_0 to P1_17, P12_0 to P1_27, P13_0 to P13_7, P1_0 to P1_27, P13_0 to P13_7, P1_0 to P1_17, P1_0 to P1_17, P1_0 to P1_17, P2_0 to P2_7, P1_0 to P1_27, P13_0 to P13_7, P1_0 to P1_17, P1_0 to P1_27, P1_0			_						
P14 0, P14 1 P10 10 P0 1, P1 0 10 P1 7, P2 0 10 P2 7, P3 0 10 P3 7, P4 0 10 P4 7, P5 0 10 P5 7, P6 0 10 P6 7, P7 0, P7 2 10 P1 7, P10 0 10 P10 7, P1 10 10 P1 17, P12 0 10 P12 7, P13 0 10 P3 7, P1 0 10 P1 0, P1 0 0, P1 0, P1 17, P12 0 10 P12 7, P13 0 10 P13 7, P14 0, P14 1 Vo: P0 0 10 P0 7, P1 0 10 P1 7, P2 0 10 P2 7, P1 0 10 P1 7, P2 0 10 P2 7, P1 0 10 P1 7, P2 0 10 P2 7, P1 0 10 P1 7, P2 0 10 P2 7, P1 0 10 P1 7, P3 0 10 P3 7, P1 0 10 P1 17, P1 2 0 10 P1 2, P1 0 10 P1 17, P1 0 0 P1 1									
Voir HIGH Output Voltage P0.0 to P0.7, P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.7, P5.0 to P5.7, P6.0 to P5.7, P7.0, P7.2 to P7.7, P8.0 to P8.4, P6.6, P8.7, P9.0, P9.2 to P9.7, P10.0 to P10.7, P11.0 to P11.7, P12.0 to P12.7, P13.0 to P13.7, P14.0, P14.1 Iow = -1mA 3.0 Vcc. Voir HIGH Output Voltage XCOUT HIGHPOWER Iow = -0.5mA 3.0 Vcc. Voir HIGH Output Voltage XCOUT HIGHPOWER With no load applied 2.5 Voir LOW Output Voltage P0.0 to P0.7, P1.0 to P1.7, P2.0 to P2.7, P6.0 to P6.7, P7.0 to P7.7, P8.0 to P8.4, P8.6, P8.7, P9.0 to P9.7, P10.0 to P10.7, P11.0 to P1.7, P12.0 to P12.7, P3.0 to P3.4, P8.6, P8.7, P9.0 to P9.7, P10.0 to P10.7, P11.0 to P11.7, P12.0 to P12.7, P13.0 to P13.7, P14.0, P14.1 Iox = 200µA 0.4 Voit LOW Output Voltage XOUT HIGHPOWER Iox = 200µA 2.6 Voit LOW Output Voltage XOUT HIGHPOWER Iox = 0.5mA 2.6 Voit age P3.0 to P3.7, P4.0 to P4.7, P8.0 to P8.4, P8.6, P8.7, P9.0 to P9.7, P10.0 to P10.7, P11.0 to P11.7, P12.0 to P12.7, P13.0 to P13.7, P11.0 to P11.7, P12.0 to P12.7, P13.0 to P13.7, P12.0 to P1					7,				
Voltage P3 0 to P3 7, P4 0 to P4 7, P5 0 to P5 7, P6 0 to P6 7, P7 0, P7 2 to P7 7, P8 0 to P8 4, P8 6, P8 7, P9 0, P9 2 to P7 7, P8 0 to P8 4, P8 6, P8 7, P9 0, P9 2 to P7 7, P8 0 to P8 4, P8 6, P8 7, P9 0, P9 2 to P7 7, P1 0, to P1 7, P11 0 to P11 7, P12 0 to P12 7, P13 0 to P13 7, P14 0, P14 1 Iow = -1mA 3.0 Vor Voit HIGH Output Voltage XCOUT HIGHPOWER Iow = -0.5mA 3.0 Vor Voit Voitage XCOUT HIGHPOWER Iow = -0.5mA 3.0 Vor Voitage XCOUT HIGHPOWER With no load applied 2.5 Voitage P0 0 to P0 7, P1 0 to P1 7, P2 0 to P2 7, P3 0 to P3 7, P4 0 to P4 7, P5 0 to P5 7, P6 0 to P6 7, P7 0 to P7 7, P8 0 to P8 4, P8 6, P8 7, P9 0 to P9 7, P10 0 to P10 7, P11 0 to P11 7, P12 0 to P12 7, P13 0 to P13 7, P14 0, P14 1 0.4 2.0 Voitage P0 0 to P0 7, P1 0 to P1 7, P2 0 to P2 7, P3 0 to P3 7, P4 0 to P4 7, P5 0 to P5 7, P6 0 to P6 7, P7 0 to P7 7, P8 0 to P8 4, P8 6, P8 7, P9 0 to P9 7, P10 0 to P10 7, P11 0 to P11 7, P12 0 to P12 7, P13 0 to P13 7, P14 0, P14 1 0.4 0.4 Voitage Voitage XOUT HIGHPOWER Iox = 1mA 2.0 0.2 Voitage XOUT HIGHPOWER With no load applied 0 0 0 Vr+.Vr <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
P6_0 to P0_7, P1_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P7_7, P8_0 to P8_7, P14_0, P14_1 Image: P14_0, P14_1 Voir HIGH Output Voltage XOUT HIGHPOWER HIGHPOWER Ion = -1mA 3.0 Voir Voir Use pair pair pair pair pair pair pair pair		HIGH Output	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7	⁷ , Іон = –200µА	Vcc-0.3		Vcc	V
P6 (10 P6 7, P7, 0, P7, 2 Ib P7, 7, P8, 01 P8, 4, P8 6, P8 7, P9, 0, P9, 2 Ib P3, 7, P3, 010 P13, 7, P14, 0, P14, 1 Image: P14, 0, P14, 1 <thimage: 0,="" 1<="" p14,="" th=""> <thimage: 0,="" p14,="" p14,<="" td=""><td></td><td>Voltage</td><td>P3_0 to P</td><td>3_7, P4_0 to P4_7, P5_0 to P5_7</td><td>7,</td><td></td><td></td><td></td><td></td></thimage:></thimage:>		Voltage	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7	7,				
P8.6, P8.7, P9.0, P9.2 to P9.7, P10_0 to P10.7, P11_0 to P11.7, P12_0 to P12.7, P13_0 to P13.7, P14_0, P14_1 Iow = -1mA 3.0 Vcc Voitage XOUT HIGHPOWER Iow = -0.5mA 3.0 Vcc Uow Voitage NOUT HIGHPOWER With no load applied 2.5 Voitage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, IOW P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P10_7, P11_0 to P11_7, P12_0 to P1_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P5_0 to P5_7, P11_0 to P11_7, P12_0 to P10_7, P11_0 to P11_7, P12_0 to P10_7, P12_0 to P12_7, P10_0 to P10_7, P12_0 to P12_7, P10_0 to P1_7, P2_0 to P2_7, Vi + Vr Iow Start 0.2 0.2 Vr+-Vr Hysteresis XIN Vi + OV 0.2 0.2 0.2 Vr+-Vr Hysteresis XIN Vi + OV 0.2 0.2 0.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 Image Number									
P14_0, P14_1 P14_0, P14_1 P14_0, P14_1 P14_0, P14_1 Voit HIGH Output Voltage XOUT HIGHPOWER Ioir = -1mA 3.0 Vici HIGH Output Voltage XCOUT HIGHPOWER With no load applied 2.5 Vicit Usinge P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P1_7, P1_0 to P1_0, P1_0 to P10_7, P11_0 to P11_7, P1_2 0 to P12_7, P10_0 to P10_7, P11_0 to P1_7, P1_0 to P1_7, P2_0 to P5_7, P6_0 to P6_6, P, P7_0 to P7_7, P10_0 to P10_7, P14_0, P14_1 0.4 Voitage COW Output Voltage NOUT HIGHPOWER With no load applied 0.4 Voitage COW Output Voltage NOUT P1_0 to P1_7, P1_0 to P1_7, P1_1 ot P11_7, P1_2 0 to P10_7, P14_0, P14_1 0.4 2.0 Voitage LOW Output Voltage XOUT HIGHPOWER With no load applied 0 Vr+-Vr Hysteresis TAOIN to TAAIN, TBOIN to TBSIN, INTO to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDAto SDAze, LX6 to CKG, ANOUT to TAVOUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 0.2 0.2 Vr+-Vr Hysteresis TAOIN to TAAIN, TBOIN to TASIN, TP4_0, P14_1, XIN, RESET, CNVSS, BYTE 0.2 <									
HGH Output Voltage XOUT HIGHPOWER LOWPOWER Ion = -1mA 3.0 Vol Ion = -0.5mA HIGH Output Voltage XCOUT HIGHPOWER Ion = -0.5mA 3.0 Vol Ion = -0.5mA 2.5 Vol. UOW Output Voltage P0.0 to P0.7, P1.0 to P1.7, P2.0 to P2.7, P1.0 to P1.7, P2.0 to P2.7, P10.0 to P10.7, P11.0 to P11.7, P12.0 to P12.7, P8.0 to P8.4, P8.6, P8.7, P9.0 to P9.7, P10.0 to P10.7, P11.0 to P11.7, P12.0 to P12.7, P10.0 to P10.7, P11.0 to P11.7, P12.0 to P2.7, P10.0 to A00.0 Notage 0.4 0.4 Vot. LOW Output Votage XOUT HIGHPOWER Iou. = 0.5mA 2.0 0.2 IOW Output Votage XOUT HIGHPOWER Iou. = 0.5mA 2.0 0.0 0.0 Vr+-Vr- Hysteresis <t< td=""><td></td><td></td><td>_</td><td></td><td>,</td><td></td><td></td><td></td><td></td></t<>			_		,				
Voltage LOWPOWER IoH = -0.5mA 3.0 Vol HIGH Output Voltage XCOUT LOWPOWER With no load applied 2.5 Vol. LOW Output Voltage P0.0 to P0.7, P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.7, P5.0 to P5.7, P6.0 to P6.7, P7.0 to P7.7, P8.0 to P8.4, P8.6, P8.7, P9.0 to P9.7, P1.0 to P1.7, P2.0 to P2.7, P1.1.0 to P11.7, P12.0 to P12.7, P13.0 to P13.7, P14.0, P14.1 IoL = 200µA 0.4 Vol. LOW Output Voltage P0.0 to P6.7, P7.0 to P7.7, P8.0 to P8.4, P8.6, P8.7, P9.0 to P9.7, P10.0 to P10.7, P10.0 to P1.7, P12.0 to P12.7, P10.0 to P10.7, P11.0 to P11.7, P12.0 to P12.7, P10.0 to P10.7, P11.0 to P11.7, P12.0 to P12.7, P10.0 to P10.7, P11.0 to P11.7, P12.0 to P12.7, P10.0 to P10.7, P14.0, P14.1 IoL = 200µA 0.4 Vol. LOW Output Voltage XOUT HIGHPOWER IIGHPOWER IoL = 0.5mA 2.0 UV Voltage XOUT HIGHPOWER IIGHPOWER IoL = 0.5mA 2.0 VT+-VT- Hysteresis TADIN to TA4IN, TB0IN to TB5IN, INT0 to INT8, NMII, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0ts SDA2, CLK to CLKA, ADOUT to TA40UT, KI0 to K13, RXD0 to RXD2, SIN3 to SIN6 0.2 1.0 VT+-VT- Hysteresis XIN 0.2 0.2 5.0 IH HIGH IDPUT P0.0 to P0.7, P1.0 to P1.7, P2.0 to P2.7, P1.0 to P1					lau 1mA	2.0		Vee	V
HIGH Output Voltage XCOUT MIGHPOWER With no load applied 0.0 2.5 Vo. LOW Output Voltage P0.0 to P0.7, P1_0 to P1.7, P2_0 to P2.7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P3_7, P6_0 to P0_7, P1_0 to P10_7, P11_0 to P1_7, P2_0 to P2.7, P10_0 to P10_7, P11_0 to P1_7, P10_0 to P10_7, P11_0 to P1_1, P12_0 to P10_7, P10_0 to P10_7, P11_0 to P1_1, P12_0 to P10_7, P10_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, With no load applied 0.2 1.0 Vr+-Vr- Wysteresis XIN 0.2 0.2 1.0 With HighPOWER With no load applied 0 0 0.2 0.2 0.2 1.0 Vr+-Vr- Wysteresis XIN 0.0 0.7, P1_0 to P1_7, P2_0 to P2_7, V1_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P10_0 to P0_7, P1_0 to P1_7, P1_0 to P1_7,			7001						v
Voltage LOWPOWER With no load applied 1.6 Vol. LOW Output P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P5_7, P6_0 to P6_7, P1_0 to P6_7, P1_0 to P1_7, P5_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1	L		VOOLIT			3.0	0.5	Vcc	
Vol. LOW Output Voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, Io = 5mA 7.0 2.C Vol. Voltage P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P1_0 to P1_7, P2_0 to P2_7, P11_0 to P1_7, P1_0 to P1_7, P2_0 to P1_7, P11_0 to P1_7, P1_0 to P1_7, P1_0 to P1_0, P11_0 to P1_7, P1_0 to P1_7, P1_0 to P1_0, P11_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P11_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, Vi+-V+ Vith no load applied 0 V0+ LOW Output Voltage XOUT HIGHPOWER LOWPOWER 0.2 0.2 1.C V1+-V+ Hysteresis TA0IN to TA4IN, TB0IN to TS5IN, INTO to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK6, TA00UT to TA40UT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 </td <td></td> <td></td> <td>XCOUT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>V</td>			XCOUT						V
Voltage P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P1_0_0 to P1_0, P1_0 up11_7, P12_0 to P1_7, P3_0 to P3_7, P14_0, P14_1 Image: D1_0 P1_1_7, P12_0 to P1_7, P1_0_0 to P1_0, P1_0 to P0_7, P1_0 to P1_7, P8_0 to P8_4, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P7_7, P1_0_0 to P1_0, P1_0 to P1_7, P12_0 to P1_7, P1_0 0 to P1_0, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 Image: D1_0 P1_0 P1_0 P1_0 P1_0 P1_0 P1_0 P1_0 P							1.6		
P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P1_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 0.4 Vol. LOW Output Voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P10_0 to P1_7, P12_0 to P12_7, P13_0 to P13_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 0.4 Vol. LOW Output Voltage XOUT HIGHPOWER ILOWPOWER IoL = 1mA 2.0 Vol. LOW Output Voltage XOUT HIGHPOWER ILOWPOWER With no load applied 0 V1+-Vr- Hysteresis TAOIN to TA4IN, TBOIN to TB5IN, INTO to INT8, NMI, ADTRG, CTS0 to CT52, SCL to SCL2, SDA0 to SDA2, CLK0 to CLK6, TAOOUT to TA4OUT, KI0 to K13, RXD0 to RXD2, SIN3 to SIN6 0.2 1.0 V1+-Vr- Hysteresis RESET 0.2 2.5 V1+-Vr+ Hysteresis XIN 0.2 0.2 5.0 Im HIGH Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 t	OL	LOW Output						2.0	V
PP_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 Iox = 200µA 0.4 Vol. LOW Output Voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P0_7, P7_0 to P1_7, P3_0 to P10_7, P10_0 to P1_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 Iox = 1mA 2.00 Vol. LOW Output Voltage XOUT HIGHPOWER IDOWPOWER Iox = 0.5mA 2.00 Vol. Voltage XCOUT HIGHPOWER IDOWPOWER With no load applied 0 VT+-VT- Hysteresis TADIN to TA4IN, TBOIN to TB5IN, INT0 to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0to SDA2, CLK0 to CLK6, TAOUTI to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 2.5.5 VT+-VT- Hysteresis RESET 0.2 0.2 0.5 V1++ HIGH Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P0_0 to P0_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P0_7, P1_0		Voltage							
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 Iou P10_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P10_7, P11_0 to P11_7, P12_0 to P10_7, P1_0 to P10_7, P14_0, P14_1 Iou = 200µA 0.4 Vol. LOW Output Voltage XOUT HIGHPOWER IOU = 0.5mA 2.00 Vol. LOW Output Voltage XCOUT HIGHPOWER IOU = 0.5mA 2.00 Vol. LOW Output Voltage XCOUT HIGHPOWER IOUPOWER With no load applied 0 VT+-VT- Voltage TAOIN to TAHIN, TBOIN to TBSIN, INT0 to INT8, IOUPOWER With no load applied 0 VT+-VT- VT+-VT- VT+-VT- Hysteresis TAOIN to TAHIN, TBOIN to TBSIN, INT0 to INT8, INMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLVoto CLK6, TAOUTI to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 2.5 Wt+-VT- Hysteresis NIN 0.2 2.5 5.0 VT+-VT- HUH HIGH Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P3_0 to P3_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7,			P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_4	1,				
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 Iou P10_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P10_7, P11_0 to P11_7, P12_0 to P10_7, P1_0 to P10_7, P14_0, P14_1 Iou = 200µA 0.4 Vol. LOW Output Voltage XOUT HIGHPOWER IOU = 0.5mA 2.00 Vol. LOW Output Voltage XCOUT HIGHPOWER IOU = 0.5mA 2.00 Vol. LOW Output Voltage XCOUT HIGHPOWER IOUPOWER With no load applied 0 VT+-VT- Voltage TAOIN to TAHIN, TBOIN to TBSIN, INT0 to INT8, IOUPOWER With no load applied 0 VT+-VT- VT+-VT- VT+-VT- Hysteresis TAOIN to TAHIN, TBOIN to TBSIN, INT0 to INT8, INMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLVoto CLK6, TAOUTI to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 2.5 Wt+-VT- Hysteresis NIN 0.2 2.5 5.0 VT+-VT- HUH HIGH Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P3_0 to P3_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7,			P8 6, P8	7, P9 0 to P9 7, P10 0 to P10 7	7,				
P14_0, P14_1 P14_0, P14_1 P14_0, P14_1 P10 to P17, P2_0 to P27, P1_0 to P17, P2_0 to P27, P2_0 to P27, P2_0 to P3, 0 to P3, 7, P4_0 to P47, P5_0 to P5, 7, P6_0 to P67, P7_0 to P10, 7, P10_0 to P10, 7, P11_0 to P11, 7, P12_0 to P12, 7, P10_0 to P10, 7, P11_0 to P11, 7, P12_0 to P12, 7, P10_0 to P10, 7, P14_0, P14_1 P14_0, P14_1 P2. P14_0, P14_1 P2. P2. P2.0 to P2, P10_0 to P10, 7, P10_0 to P10, 7, P11_0 to P11, 7, P12_0 to P12, 7, P13_0 to P13, 7, P14_0, P14_1 P2. P2. P2.0 to P2, P10_0 to P10, 7, P10_0 to P10, 7, P11_0 to P11, 7, P12_0 to P20, 7, P14_0, P14_1 P2. P2. P2.0 to P2, P10_0 to P10, 7, P10_0 to P10, 7, P10, P10, P10, P12, P20, P20, P2, P2, P20, P20, P20, P20,									
Vol. LOW Output Voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P2_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P1_7, P1_0 to P10_7, P1_1 0to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 0.4 Vol. LOW Output Voltage XOUT HIGHPOWER LOWPOWER IoL = 1mA 2.0 Vol. LOW Output Voltage XOUT HIGHPOWER LOWPOWER IoL = 0.5mA 2.0 Vr+-Vr- Hysteresis TAOIN to TA4IN, TBOIN to TBSIN, INTO to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK6, TAOUUT to TA4UUT, Ki0 to K13, RXD0 to RXD2, SIN3 to SIN6 0.2 1.0 Vr+-Vr- Hysteresis RESET 0.1 P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_1 to P1_1, P1_1, P1_0 to P1_7, P1_0 to P1_7, P1_1 to P1_1, P1_1 to P1_1, P1_1, P1					,				
Voltage P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 Image: Constraint of Constrai			_ ·	—	7 In. 200uA			0.45	V
P6_0 to P6_7, P_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 IoL = 1mA 2.0 Vol. LOW Output Voltage XOUT HIGHPOWER LOWPOWER IoL = 0.5mA 2.0 Vol. Voltage XCOUT HIGHPOWER LOWPOWER With no load applied 0 V7+-VT- Hysteresis TAOIN to TA4IN, TBOIN to TBSIN, INT0 to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK5, TA0OUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 2.2.5 V7+-VT- Hysteresis RESET 0.2 0.2 0.2 IH HIGH POWER 0.2 0.2 0.2 0.2 0.2 IH Hysteresis XIN 0.2 0.2 0.2 0.2 V1+-VT- Hysteresis XIN 0.10 P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P4_0 to P4_7, P1_0_0 to P1_7, P1_0 to P1_7, P1								0.45	v
P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P13_7, P14_0, P14_1 Iou = 1mA 2.0 Vol. LOW Output Voltage XOUT HIGHPOWER Iou = 0.5mA 2.0 LOW Output Voltage XOUT HIGHPOWER With no load applied 0 0 V/r+-VT- Hysteresis TAOIN to TA4IN, TBOIN to TBSIN, INT0 to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0to SDA2, CLK0 to CLK6, TAOUTTo TA40UT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 1.0 Vr+-VT- Hysteresis RESET 0.2 2.5 Vr+-VT- Hysteresis NEST, CAVS, SNT6 0.2 0.2 HH HIGH Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CAVSS, BYTE VI = 0V -5.1 IL LOW Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P9_0 to P9_7, P10_0 to P1_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CAVSS, BYTE VI = 0V 30 50 17(Revulue Pull-up P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_2 to P12_7, P13_0 to P13_7, P1_0 to P13_7, P14_0, P14_1, XIN, RESET, CAVSS, BYTE 30 50 17(<td< td=""><td></td><td>vonage</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		vonage							
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 Image: P11_0 to P14_7, P13_0 to P13_7, P14_0, P14_1 Image: P11_0 to P14_1, P11_0 to P11_7, P12_0 to P13_7, P13_0 to P13_7, P12_0 to P13_7, P14_0 to P13_7, P13_0 to P13_7, P12_0 to P13_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE V1 = OV S0									
Image: Pit_0, Pit_1 Pit_0, Pit_1 Image: Pit_0, Pit_1 Image: Pit_0, Pit_1 Pit_1, Pit_1									
Vol. LOW Output Voltage XOUT LOW Output Voltage HIGHPOWER LOWPOWER IoL = 1mA 2.0 V1+-VT- LOW Output Voltage XCOUT MIGHPOWER HIGHPOWER With no load applied 0 2.0 V1+-VT- Hysteresis TAOIN to TA4IN, TBOIN to TBSIN, INTO to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK6, TAOOUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 1.0 V1+-VT- Hysteresis ALIN 0.10 to P1, P2_0 to P2, 7, P4_0 to P4, 7, P5_0 to P5, 7, P6_0 to P6, 7, P7_0 to P1, 7, P8_0 to P8, 7, P9_0 to P9, 7, P10_0 to P10, 7, P11_0 to P11, 7, P12_0 to P12, 7, P13_0 to P13, 7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE 0.2 -5.0 IIL LOW Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12, 7, P13_0 to P13, 7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE -5.1 -5.1 IIL LOW Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P0_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P0_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_1_7, P1_			P11_0 to P	11_7, P12_0 to P12_7, P13_0 to P13_	7,				
Voltage LOWPOWER IoL = 0.5mA 2.0 LOW Output Voltage XCOUT HIGHPOWER With no load applied 0 Vr+-Vr- Hysteresis TAOIN to TA4IN, TBOIN to TB5IN, INTO to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK6, TAOOUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 1.0 Vr+-Vr- Hysteresis RESET 0.2 2.5 Vr+-Vr- Hysteresis XIN 0.2 0.2 0.2 Wr+-Vr- Hysteresis RESET 0.2 0.2 0.2 Vr+-Vr- Hysteresis XIN 0.2 0.2 0.2 Wr+-Vr- Hysteresis XIN P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P1_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE Vi = 0V -5.1 InL LOW Input P0_0 to			P14_0, P1	4_1					
Voltage LOWPOWER IoL = 0.5mA IoL = 0.5mA 2.0 LOW Output Voltage XCOUT HIGHPOWER With no load applied 0 0 VT+-VT- Voltage Hysteresis TAOIN to TAAIN, TBOIN to TBSIN, INTO to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK6, TAOOUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 1.0 VT+-VT- Hysteresis RESET 0.2 2.5 VT+-VT- Hysteresis HIGH Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 5V 5.0 Int_ LOW Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V 30 50 170 RPULLUP Pull-up Resistance P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P1_7, P1_0 to P1_7, P12_0 to P1_2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P1_1_0 to P1_1_7, P1_2 to P1_7, P1_0 to P1_7, P1_1_0 to P1_1_7, P1_2 to P1_7, P1_0 to P1_7, P1_1_0 to P1_1_7, P1_2 to P1_2_7, P1_3	OL	LOW Output	XOUT	HIGHPOWER	loL = 1mA			2.0	V
LOW Output Voltage XCOUT LOWPOWER HiGHPOWER LOWPOWER With no load applied 0 VT+-VT- VT+-VT- Hysteresis TAOIN to TA4IN, TBOIN to TB5IN, INTO to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK6, TAOOUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 1.0 VT+-VT- Hysteresis RESET 0.2 2.5 VT+-VT- Hysteresis RESET 0.2 2.5 VT+-VT- Hysteresis P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, Current V1 = 5V 0.2 0.2 HH HIGH Input P0_0 to P0_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P4_0, to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P1_7, P2_0 to P2_7, P12_0 to P12_7, P13_0 to P13_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P1_7, P14_0 to P1_1, XIN, RESET, CNVSS, BYTE -5.1 RPULLUP PUI-up Resistance P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P1_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE V1 = 0V 30 50 170 RPULLUP PUI-up Resistance P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P1_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE V1 = 0V 30 50 170 RWIL<		Voltage		LOWPOWER				2.0	
Voitage LOWPOWER With no load applied 0 VT+-VT- Hysteresis TAOIN to TA4IN, TBOIN to TB5IN, INTO to INT8, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK6, TAOOUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 1.0 VT+-VT- Hysteresis RESET 0.2 2.5 VT+-VT- Hysteresis XIN 0.2 0.2 IHH HIGH Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P1_7, P1_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V -5.1 IIL LOW Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V 30 50 170 RPULLUP Pull-up Resistance P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 VI = 0V 30 50 170	ŀ		XCOUT				0		V
VT+-VT- Hysteresis TAOIN to TA4IN, TBOIN to TB5IN, INTO to INT6, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK6, TAOUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 1.0 VT+-VT- Hysteresis RESET 0.2 2.5 VT+-VT- Hysteresis XIN 0.2		Voltage					-		ľ
NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK6, TAOUUT to TA40UT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 2.5 VT+-VT- Hysteresis RESET 0.2 0.2 0.6 VT+-VT- Hysteresis XIN 0.2 0.2 0.5 VT+-VT- Hysteresis XIN 0.2 0.6 VT+-VT- Hysteresis XIN 0.2 0.5 VT+-VT- Hysteresis XIN 0.2 0.6 UH HIGH Input P0_0 to P0_7, P1_0 to P1_7, P5_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V -5.1 Int_ LOW Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V 30 50 17(RPULLUP Pull-up P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P1_7, P1_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P12_7, P1_3 0 to P13_7, P14_0 to P4_7, P5_0 to P5_7, P1_0 to P10_7, P1_1 0 to P11_7, P12_0 to P1_7, P1_0 to P1_7, P2_0 to P2_7, P1_0 to P10_7, P1_1 0 to P11_7, P12_0 to P1_7, P1_0 to P1_7, P1_			TAOIN to T					1.0	V
SDA0 to SDA2, CLK0 to CLK6, TA0OUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 2.5 VT+-VT- Hysteresis RESET 0.2 <td< td=""><td>IT VI</td><td>Tryotoroolo</td><td></td><td></td><td></td><td>0.2</td><td></td><td>1.0</td><td>v</td></td<>	IT VI	Tryotoroolo				0.2		1.0	v
KI0 to KI3, RXD0 to RXD2, SIN3 to SIN6 0.2 2.5 VT+-VT- Hysteresis XIN 0.2 0.2 0.2 VI+-VT- Hysteresis XIN 0.2 0.2 0.2 IHH HIGH Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P1_10 to P1_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V 5.0 ILL LOW Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P1_10 to P1_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V -5.1 RPULLUP Pull-up Resistance P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, D7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 VI = 0V 30 50 17(0) RIVLLUP Pull-up Resistance P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, 07_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 1.5			,		· ·				
VT+-VT- Hysteresis RESET 0.2 2.5 VT+-VT- Hysteresis XIN 0.2 0.2 0.2 IIH HIGH Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE 5.0 IIL LOW Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE -5.0 RPULLUP Pull-up Resistance P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P13_7, P14_0, P14_1 VI = 0V 30 50 170 RIXIN Feedback Resistance XIN 1.5 1.5					l ,				
VT+-VT- Hysteresis XIN 0.2 0.2 0.2 IIH HIGH Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V -5.0 IIL LOW Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE -5.0 RPULLUP Pull-up Resistance P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P10_0 to P1_7, P12_0 to P1_7, P10_0 to P1_7, P1_0 to P1_7, P11_0 to P11_7, P12_0 to P1_7, P3_0 to P3_7, P14_0, P14_1 VI = 0V 30 50 170 RIXIN Feedback Resistance XIN 1.5 1.5				, RXD0 to RXD2, SIN3 to SIN6					
HIGH Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE Vi = 0V									V
Current P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V Int. LOW Input P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V -5.1 RPULLUP Pull-up P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V 30 50 17(0) RPULLUP Pull-up P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 VI = 0V 30 50 17(0) Rtxin Feedback Resistance XIN XIN 1.5 1.5	′ ⊤+-V ⊤-	Hysteresis				0.2		0.8	V
Current P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE -5. Int_ LOW Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE -5. RPULLUP Pull-up Resistance P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 V1 = 0V 30 50 17(Rtxin Feedback Resistance XIN Int_1 1.5 1.5	н	HIGH Input	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7	7, VI = 5V			5.0	μA
P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V Int. LOW Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V RPULLUP Pull-up Resistance P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P13_7, P14_0, P14_1 VI = 0V 30 50 17(Rtxin Feedback Resistance XIN XIN 1.5 1.5			P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7	7,				
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE Image: Constant of the state of the st		ounon	P6 0 to P	6 7. P7 0 to P7 7. P8 0 to P8	7.				
P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE Image: Constant of the second sec									
XIN, RESET, CNVSS, BYTE Image: Constant of the second									
LOW Input Current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V 30 50 170 RPULLUP Pull-up Resistance P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 VI = 0V 30 50 170 Rtxin Feedback Resistance XIN 1.5 1.5			_		1,				
Current P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE VI = 0V 30 50 170 RPULLUP Pull-up P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P13_7, P14_0, P14_1 VI = 0V 30 50 170 Rtxin Feedback Resistance XIN XIN 1.5 1.5					7				
P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE 30 50 170 RPULLUP Pull-up P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P6_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 30 50 1.5		•	_					-5.0	μA
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE Image: Comparison of the text of tex of text of text of tex of text of tex of text of text o		Current							
P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE Image: Constant of the second sec			P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_3	7,				
XIN, RESET, CNVSS, BYTE Image: Constraint of the second secon			P9_0 to P9	_7, P10_0 to P10_7, P11_0 to P11_7	7,				
XIN, RESET, CNVSS, BYTE Image: Conversion of the i			P12 0 to P	12 7. P13 0 to P13 7. P14 0. P14	1.				
Pull-up P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, VI = 0V 30 50 170 Resistance P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 30 50 170 RrxIN Feedback Resistance XIN 1.5 1.5					,				
Resistance P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 1.5		Pull-up			$7 V_{1} = 0 V_{2}$	30	50	170	kΩ
P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 1.5						30	50	170	_ KS2
P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 1.5		Resistance							
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 Rtxin Feedback Resistance XIN									
P14_0, P14_1 1.5 RfXIN Feedback Resistance XIN 1.5									
P14_0, P14_1 1.5 RrxIN Feedback Resistance XIN 1.5			P11_0 to P	11_7, P12_0 to P12_7, P13_0 to P13_	7,				
Rixin Feedback Resistance XIN 1.5									
	fXIN	Feedback Resi					1.5		MΩ
				XCIN			15		MΩ
VRAM RAM Retention Voltage At stop mode 2.0					At stop mode	20			V

1. Referenced to VCC = 3.0 to 5.5V, VSS = 0V at Topr = -40 to 85° C, f(BCLK) = 24MHz unless otherwise specified. 2. P11 to P14, INT6 to INT8, CLK5, CLK6, SIN5 and SIN6 are only in the 128-pin version.

Symbol	Pa	rameter	Measuring Condition		Standard			Unit
-				<u> </u>	Min.	Тур.	Max.	
lcc	Power Supply	Output pins are open	Mask ROM	f(BCLK) = 24MHz,		19	33	mA
	Current	and other pins are VSS.		PLL operation,				
	(VCC = 3.0 to 5.5V)			No division				
				On-chip oscillation,		1		mA
				No division				
			Flash Memory	f(BCLK) = 24MHz,		21	35	mA
				PLL operation,				
				No division				
				On-chip oscillation,		1.8		mA
				No division				
			Flash Memory	f(BCLK) = 10MHz,		15		mA
			Program	VCC = 5V				
			Flash Memory	f(BCLK) = 10MHz,		25		mA
			Erase	VCC = 5V				
			Mask ROM	f(BCLK) = 32kHz,		25		μA
				Low power dissipation				
				mode, ROM (2)				
			Flash Memory	f(BCLK) = 32kHz,		25		μA
				Low power dissipation				
				mode, RAM (2)				
				f(BCLK) = 32kHz,		420		μA
				Low power dissipation				
				mode,				
				Flash memory (2)				
			Mask ROM	On-chip oscillation,		50		μA
			Flash Memory	Wait mode				
				f(BCLK) = 32kHz,		8.5		μA
				Wait mode (3),				
				Oscillation capacity High				
				f(BCLK) = 32kHz,		3.0		μA
				Wait mode (3),				
				Oscillation capacity Low				
				Stop mode,		0.8	3.0	μA
				Topr = 25°C				

Table 21.5 Electrical Characteristics (2) (1)

NOTES:

1. Referenced to VCC = 3.0 to 5.5V, VSS = 0V at Topr = -40 to 85° C, f(BCLK) = 24MHz unless otherwise specified.

2. This indicates the memory in which the program to be executed exists.

3. With one timer operated using fC32.

Symbol	Paran	notor		Measuring Condition	Standard		Unit	
Symbol	Falan	neter		Measuring Condition		Тур.	Max.	Unit
-	Resolution		VREF :	= VCC			10	Bit
INL	Integral	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	Nonlinearity		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
	Error		= 5V	External operation amp connection mode			±7	LSB
			VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±5	LSB
			= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 3.3V	External operation amp connection mode			±7	LSB
		8 bits	VREF :	= AVCC = VCC = 3.3V			±2	LSB
_	Absolute	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	Accuracy		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 5V	External operation amp connection mode			±7	LSB
			VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±5	LSB
			= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 3.3V	External operation amp connection mode			±7	LSB
		8 bits	VREF :	= AVCC = VCC = 3.3V			±2	LSB
DNL	Differential Non	linearity Error					±1	LSB
_	Offset Error						±3	LSB
-	Gain Error						±3	LSB
RLADDER	Resistor Ladde	ər	VREF :	= VCC	10		40	kΩ
tconv	10-bit Convers	ion Time,	VREF :	= VCC = 5V, φAD = 10MHz	3.3			μs
	Sample & Hold fu	inction Available						
	8-bit Conversi	on time,	VREF :	= VCC = 5V, φAD = 10MHz	2.8			μs
	Sample & Hold fu	inction Available						
t SAMP	Sampling Time	9			0.3			μs
Vref	Reference Vol	tage			2.0		Vcc	V
VIA	Analog Input V	'oltage			0		VREF	V

Table 21.6 A/D Conversion Characteristics	on Characteristics '''
---	------------------------

NOTES:

1. Referenced to VCC = AVCC = VREF = 3.3 to 5.5V, VSS = AVSS = 0V, -40 to 85° C unless otherwise specified.

2. ϕ AD frequency must be 10MHz or less.

When sample & hold function is disabled, φAD frequency must be 250kHz or more in addition to a limit of NOTE 2.
 When sample & hold function is enabled, φAD frequency must be 1MHz or more in addition to a limit of NOTE 2.

Table 21.7 D/A conversion Characteristics (1)

Symbol	Parameter	Measuring Condition	S	Unit		
Symbol	i aldinetei	Measuring Condition	Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to VCC = AVCC = VREF = 3.3 to 5.5V, VSS = AVSS = 0V, -40 to 85° C unless otherwise specified.

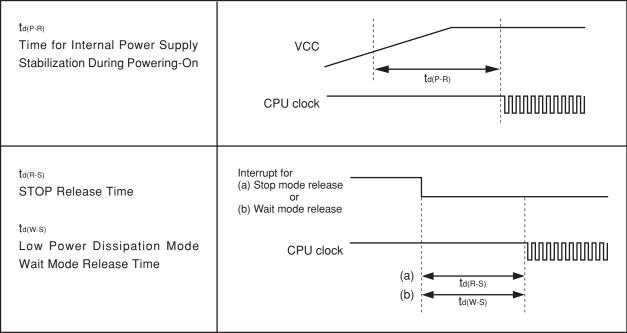
2. This applies when using one D/A converter, with the DAi register (i = 0, 1) for the unused D/A converter set to "00h". The resistor ladder of the A/D converter is not included. Also, the current IVREF always flows even though VREF may have been set to be unconnected by the ADCON1 register.

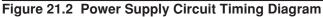
Table 21.8 Flash Memory Version Electrical Characteristics (1)

Parameter		Standard			
Faranieter	Min.	Тур.	Max.	Unit	
Word Program Time		30	200	μs	
Block Erase Time		1	4	S	
Erase All Unlocked Blocks Time		1 × n (2)	4 × n (2)	S	
Lock Bit Program Time		30	200	μs	
Flash Memory Circuit Stabilization Wait Time			15	μs	
	Block Erase Time Erase All Unlocked Blocks Time Lock Bit Program Time	Min.Word Program TimeBlock Erase TimeErase All Unlocked Blocks TimeLock Bit Program Time	ParameterMin.Typ.Word Program Time30Block Erase Time1Erase All Unlocked Blocks Time1 × n (2)Lock Bit Program Time30	ParameterMin.Typ.Max.Word Program Time30200Block Erase Time14Erase All Unlocked Blocks Time14 × n (2)Lock Bit Program Time30200	

NOTES:

1. Referenced to VCC = 4.5 to 5.5V, 3.0 to 3.6V, Topr = 0 to 60° C unless otherwise specified.


2. n denotes the number of blocks to erase.


Table 21.9 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr = 0 to 60°C)

Flash Program, Erase Voltage	Flash Read Operation Voltage
VCC = 3.3 ± 0.3V or 5.0 ± 0.5V	VCC = 3.0 to 5.5V

Table 21.10 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring	S	Unit		
Cymbol	i didiletei	Condition	Min.	Тур.	Max.	Onit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	VCC = 3.0 to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μs
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs

Timing Requirements (Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85° C unless otherwise specified)

Table 21.11 External Clock Input (XIN Input)

Symbol	Parameter	Stan	dard	Unit
	Farameter	Min.	Max.	Unit
tc	External Clock Input Cycle Time	62.5		ns
tw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tr	External Clock Fall Time		15	ns

Table 21.12 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Standard	
	Farameter	Min.	Max.	Unit
tc(TA)	TAIIN Input Cycle Time	100		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	40		ns
tw(TAL)	TAIIN Input LOW Pulse Width	40		ns

Table 21.13 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	Farameter	Min.	Max.	
tc(TA)	TAiIN Input Cycle Time	400		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	200		ns
tw(TAL)	TAilN Input LOW Pulse Width	200		ns

Table 21.14 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	ndard Max.	Unit
	Falailletei	Min.		Unit
tc(TA)	TAIIN Input Cycle Time	200		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	100		ns
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns

Table 21.15 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol	Farameter	Min.	Max.	Unit
tw(TAH)	TAIIN Input HIGH Pulse Width	100		ns
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns

Table 21.16 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
	Falailletei	Min.	Max.	
tc(UP)	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAIOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAIOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time	400		ns

Table 21.17 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Max.	Unit
	Falailletei	Min.		Onit
tc(TA)	TAIIN Input Cycle Time	800		ns
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	200		ns
tsu(taout-tain)	TAIIN Input Setup Time	200		ns

Timing Requirements (Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85° C unless otherwise specified)

Table 21.18 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol	Farameter	Min.	Max.	Unit
tc(TB)	TBiIN Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	40		ns
tc(TB)	TBiIN Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	80		ns

Table 21.19 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	ndard	Unit
	Parameter	Min.	Max.	Unit
tc(TB)	TBIIN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 21.20 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	ndard Max.	Unit
Symbol		Min.	Max.	Unit
tc(TB)	TBiIN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBIIN Input LOW Pulse Width	200		ns

Table 21.21 A/D Trigger Input

Symbol	Deremeter	Stan	dard	Linit
Symbol	Parameter	Min.	Max.	Unit
tc(AD)	ADTRG Input Cycle Time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG Input LOW Pulse Width	125		ns

Table 21.22 Serial I/O

Symbol	Parameter	Stan	dard	Unit
Symbol	Farameter	Min.	Max.	Unit
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input HIGH Pulse Width	100		ns
tw(CKL)	CLKi Input LOW Pulse Width	100		ns
td(C-Q)	TXDi Output Delay Time		80	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	70		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 21.23 External Interrupt INTi Input

Symbol	Parameter		Standard	
			Max.	Unit
tw(INH)	INTi Input HIGH Pulse Width	250		ns
t _{w(INL)}	INTi Input LOW Pulse Width	250		ns

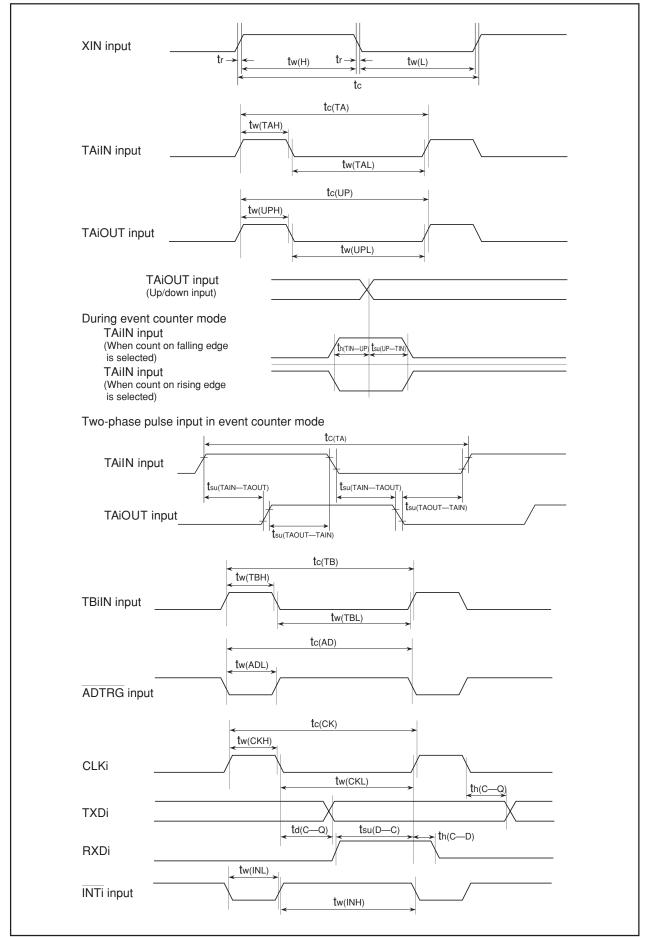


Figure 21.3 Timing Diagram

22. Usage Precaution

22.1 SFR

There is the SFR which can not be read (containg bits that will result in unknown data when read).

Please set these registers to their previous values with the instructions other than the read modify write instructions.

Table 22.1 lists the registers contain bits that will result in unknown data when read and Table 22.2 lists the instruction table for read modify write.

Register Name	Symbol	Address
Timer A1-1 Register (1)	TA11	01C3h, 01C2h
Timer A2-1 Register (1)	TA21	01C5h, 01C4h
Timer A4-1 Register (1)	TA41	01C7h, 01C6h
Dead Time Timer	DTT	01CCh
Timer B2 Interrupt Occurrences Frequency Set Counter	ICTB2	01CDh
SI/O6 Bit Rate Generator ⁽²⁾	S6BRG	01D9h
SI/O3 Bit Rate Generator	S3BRG	01E3h
SI/O4 Bit Rate Generator	S4BRG	01E7h
SI/O5 Bit Rate Generator ⁽²⁾	S5BRG	01EBh
UART2 Bit Rate Generator	U2BRG	01F9h
UART2 Transmit Buffer Register	U2TB	01FBh, 01FAh
Up-Down Flag	UDF	0384h
Timer A0 Register ⁽³⁾	TA0	0387h, 0386h
Timer A1 Register (1) (3)	TA1	0389h, 0388h
Timer A2 Register (1) (3)	TA2	038Bh, 038Ah
Timer A3 Register ⁽³⁾	TA3	038Dh, 038Ch
Timer A4 Register (1) (3)	TA4	038Fh, 038Eh
UART0 Bit Rate Generator	U0BRG	03A1h
UART0 Transmit Buffer Register	UOTB	03A3h, 03A2h
UART1 Bit Rate Generator	U1BRG	03A9h
UART1 Transmit Buffer Register	U1TB	03ABh, 03AAh

Table 22.1	Registers	Contain	Bits	that Will	Result in	n Unknown	Data V	When Read
------------	-----------	---------	------	-----------	-----------	-----------	--------	-----------

NOTES:

1. It is affected only in three-phase motor control timer function.

- 2. These registers are only in the 128-pin version.
- 3. It is affected only in one-shot timer mode and pulse width modulation mode.

Table 22.2 Instruction Table for Read Modify Write

Function	Mnemonic
Bit Manipulation	BCLR, BNOT, BSET, BTSTC, BTSTS
Shift	RCLC, RORC, ROT, SHA, SHL
Arithmetic	ABS, ADC, ADCF, ADD, DEC, EXTS, INC, MUL, MULU, NEG, SBB, SUB
Logical	AND, NOT, OR, XOR
Jump	ADJNZ, SBJNZ

22.2 External Clock

Do not stop the external clock when it is connected to the XIN pin and the main clock is selected as the CPU clock.

22.3 PLL Frequency Synthesizer

Stabilize supply voltage so that the standard of the power supply ripple is met. (Refer to **21. Electrical characteristics**.)

22.4 Power Control

When exiting stop mode by hardware reset, set RESET pin to "L" until a main clock oscillation is stabilized.

Set the MR0 bit in the TAiMR register (i = 0 to 4) to "0" (pulse is not output) to use the timer A to exit stop mode.

Insert more than four NOP instructions after an WAIT instruction or a instruction to set the CM10 bit in the CM1 register to "1" (all clock stopped). When shifting to wait mode or stop mode, an instruction queue reads ahead to the next instruction to halt a program by an WAIT instruction and an instruction to set the CM10 bit to "1". The next instruction may be executed before entering wait mode or stop mode, depending on a combination of instruction and an execution timing.

In the main clock oscillation or low power dissipation mode, set the CM02 bit in the CM0 register to "0" (do not stop peripheral function clock in wait mode) before shifting to stop mode.

When entering wait mode by executing the WAIT instruction after writing to addresses 03FDh to 03FFh or internal RAM area, execute the JMP.B instruction between writing to corresponding area and the executing the WAIT instruction.

If DMA transfer may occur between executing the JMP.B instruction and the WAIT instruction, set the DMAE bit (DMA enable bit) in the DMiCOM register (i = 0, 1) to "0" (disabled) before ecceuting the WAIT instruction.

Example program	MOV.B	#55H, 0601H	; Write to internal RAM area
	JMP.B	L1	
L1:			
	FSET	I	; Enable interrupt
	WAIT		; Enter to wait mode

When using the interrupt to exit stop mode, the fifth instruction ⁽¹⁾ from the instruction to enter the stop mode may be executed before executing a program of the interrupt to exit stop mode.

If this execution causes no problem with the system, there are no need for measures to be taken ⁽²⁾. If such a situation presents a problem, execute the JMP.B instruction subsequent to the instruction which sets the CM10 bit to "1" (stop mode).

Example program BSET 0, CM1 ; Stop mode JMP.B L1

L1:

Program after exiting stop mode

NOTES:

1. Insert more than four NOP instructions after the instruction shifting to wait mode or stop mode.

2. In the flash memory version, be sure to execute the measures. For details, refer to 22.18.2 Stop Mode.

Wait for main clock oscillation stabilization time, before switching the clock source for CPU clock to the main clock.

Similarly, wait until the sub clock oscillates stably before switching the clock source for CPU clock to the sub clock.

Suggestions to reduce power consumption.

Ports

The processor retains the state of each I/O port even when it goes to wait mode or to stop mode. A current flows in active I/O ports. A pass current flows in input ports that high-impedance state. When entering wait mode or stop mode, set non-used ports to input and stabilize the potential.

A/D converter

When A/D conversion is not performed, set the VCUT bit in the ADCON1 register to "0" (VREF not connection). When A/D conversion is performed, start the A/D conversion at least 1 μ s or longer after setting the VCUT bit to "1" (VREF connection).

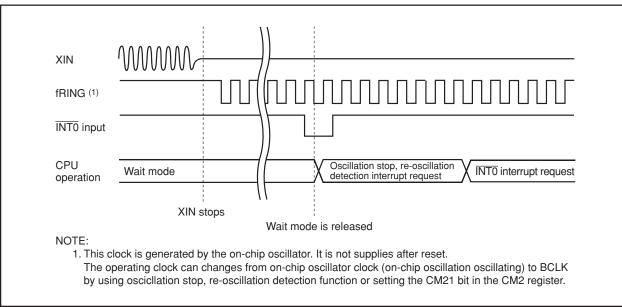
D/A converter

When not performing D/A conversion, set the DAiE bit (i = 0, 1) in the DACON register to "0" (input disabled) and DAi register to "00h".

Switching the oscillation-driving capacity

Set the driving capacity to "LOW" when oscillation is stable.

22.5 Oscillation Stop, Re-oscillation Detection Function


If the following conditions are all met, the following restriction occur in operation of oscillation stop, re-oscillation stop detection interrupt.

Conditions

- CM20 bit in CM2 register =1 (oscillation stop, re-oscillation stop detection function enabled)
- CM27 bit in CM2 register =1 (oscillation stop, re-oscillation stop detection interrupt)
- CM02 bit in CM0 register =0 (do not stop peripheral function clock in wait mode)
- · Enter wait mode from high-speed or middle-speed mode

Restriction

If the oscillation of XIN stops during wait mode, the oscillation stop, re-oscillation stop detection interrupt request is generated after the microcomputer is moved out of wait mode, without starting immediately.

Figures 22.1 and 22.2 show the operation timing at oscillation stop, re-oscillation stop detection.

Figure 22.1 Operation Timing at Oscillation Stop, Re-oscillation Stop Detection at Wait Mode (when moving out of wait mode by using INTO interrupt)

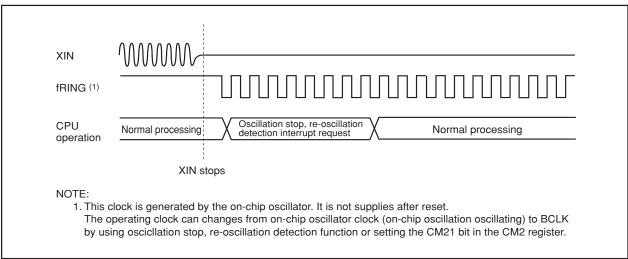


Figure 22.2 Operation Timing at Oscillation Stop, Re-oscillation Stop Detection at Normal Processing

RENESAS

22.6 Protection

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be set to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or no DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction.

22.7 Interrupt

22.7.1 Reading Address 00000h

Do not read the address 00000h in a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from the address 00000h during the interrupt sequence. At this time, the IR bit for the accepted interrupt is set to "0".

If the address 00000h is read in a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to "0". This causes a problem that the interrupt is canceled, or an unexpected interrupt request is generated.

22.7.2 Setting SP

Set any value in the SP (USP, ISP) before accepting an interrupt. The SP (USP, ISP) is set to "0000h" after reset. Therefore, if an interrupt is accepted before setting any value in the SP (USP, ISP), the program may go out of control.

Especially when using $\overline{\text{NMI}}$ interrupt, set a value in the ISP at the beginning of the program. For the first and only the first instruction after reset, all interrupts including $\overline{\text{NMI}}$ interrupt are disabled.

22.7.3 NMI Interrupt

- The NMI interrupt cannot be disabled. If this interrupt is unused, connect the NMI pin to VCC via a resistor (pull-up).
- The input level of the $\overline{\text{NMI}}$ pin can be read by accessing the P8_5 bit in the P8 register. Note that the P8_5 bit can only be read when determining the pin level in $\overline{\text{NMI}}$ interrupt routine.
- Stop mode cannot be entered into while input on the $\overline{\text{NMI}}$ pin is low. This is because while input on the $\overline{\text{NMI}}$ pin is low the CM10 bit in the CM1 register is fixed to "0".
- Do not go to wait mode while input on the NMI pin is low. This is because when input on the NMI pin goes low, the CPU stops but CPU clock remains active; therefore, the current consumption in the chip does not drop. In this case, normal condition is restored by an interrupt generated thereafter.
- The low and high level durations of the input signal to the NMI pin must each be 2 CPU clock cycles + 300 ns or more.

22.7.4 Changing Interrupt Generate Factor

If the interrupt generate factor is changed, the IR bit of the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). If you changed the interrupt generate factor for an interrupt that needs to be used, be sure to set the IR bit for that interrupt to "0" (interrupt not requested).

Changing the interrupt generate factor referred to here means any act of changing the source, polarity or timing of the interrupt assigned to each software interrupt number. Therefore, if a mode change of any peripheral function involves changing the generate factor, polarity or timing of an interrupt, be sure to set the IR bit for that interrupt to "0" (interrupt not requested) after making such changes. Refer to the description of each peripheral function for details about the interrupts from peripheral functions.

Figure 22.3 shows the procedure for changing the interrupt generate factor.

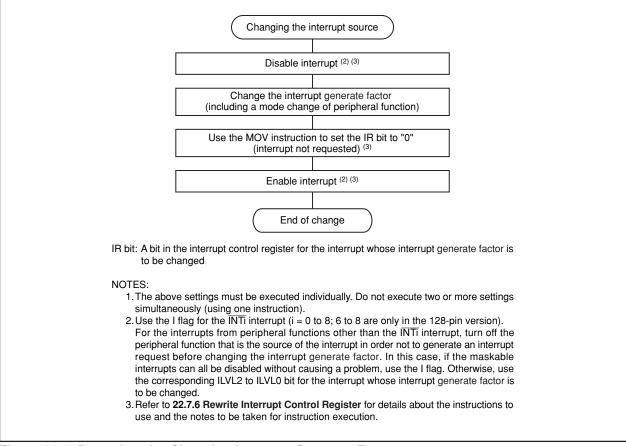


Figure 22.3 Procedure for Changing Interrupt Generate Factor

22.7.5 INT Interrupt

- Either an "L" level of at least tW(INH) or an "H" level of at least tW(INL) width is necessary for the signal input to pins INT0 to INT8 ⁽¹⁾ regardless of the CPU operation clock.
- If the POL bit in the INTOIC to INT8IC registers ⁽²⁾, the IFSR10 to IFSR15 bits in the IFSR1 register or the IFSR23 to IFSR25 bits ⁽³⁾ in the IFSR2 register are changed, the IR bit may inadvertently set to "1" (interrupt requested). Be sure to set the IR bit to "0" (interrupt not requested) after changing any of those register bits.

NOTES:

- 1. The pins $\overline{INT6}$ to $\overline{INT8}$ are only in the 128-pin version.
- 2. The INT6IC to INT8IC registers are only in the 128-pin version.
- 3. The IFSR23 to IFSR25 bits are effective only in the128-pin version. In the 100-pin version, these bits are set to "0" (one edge).

22.7.6 Rewrite Interrupt Control Register

- (a) The interrupt control register for any interrupt should be modified in places where no interrupt requests may be generated. Otherwise, disable the interrupt before rewriting the interrupt control register.
- (b) To rewrite the interrupt control register for any interrupt after disabling that interrupt, be careful with the instruction to be used.

Changing any bit other than IR bit

If while executing an instruction, an interrupt request controlled by the register being modified is generated, the IR bit of the register may not be set to "1" (interrupt requested), with the result that the interrupt request is ignored. If such a situation presents a problem, use the instructions shown below to modify the register.

Usable instructions: AND, OR, BCLR, BSET

Changing IR bit

Depending on the instruction used, the IR bit may not always be set to "0" (interrupt not requested). Therefore, be sure to use the MOV instruction to set the IR bit to "0".

(c) When using the I flag to disable an interrupt, refer to the sample program fragments shown below as you set the I flag. (Refer to (b) for details about rewrite the interrupt control registers in the sample program fragments.)

Examples 1 through 3 show how to prevent the I flag from being set to "1" (interrupt enabled) before the interrupt control register is rewritten, owing to the effects of the internal bus and the instruction queue buffer.

Example 1: Using the NOP instruction to keep the program waiting until the interrupt control register is modified INT SWITCH1:

FCLR	I	; Disable interrupt.
AND.B	#00h, 0055h	; Set the TA0IC register to "00h".
NOP		
NOP		
FSET	1	; Enable interrupt.

The number of the NOP instruction is as follows.

- The PM20 bit in the PM2 register = 1 (1 wait) : 2
- The PM20 bit = 0 (2 waits) : 3
- When using HOLD function : 4

Example 2: Using the dummy read to keep the FSET instruction waiting INT SWITCH2:

FCLR	I	; Disable interrupt.
AND.B	#00h, 0055h	; Set the TA0IC register to "00h".
MOV.W	MEM, R0	; <u>Dummy read.</u>
FSET	I	; Enable interrupt.

Example 3: Using the POPC instruction to changing the I flag INT_SWITCH3: PUSHC FLG FCLR I ; Disable interrupt. AND.B #00h, 0055h ; Set the TA0IC register to "00h".

POPC FLG ; Enable interrupt.

22.7.7 Watchdog Timer Interrupt

Initialize the watchdog timer after the watchdog timer interrupt request is generated.

22.8 DMAC

22.8.1 Write to DMAE Bit in DMiCON Register (i = 0, 1)

When both of the conditions below are met, follow the steps below.

Conditions

- The DMAE bit is set to "1" again while it remains set (DMAi is in an active state).
- A DMA request may occur simultaneously when the DMAE bit is being written.

Step 1: Write "1" to the DMAE bit and DMAS bit in the DMiCON register simultaneously ⁽¹⁾. Step 2: Make sure that the DMAi is in an initial state ⁽²⁾ in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

NOTES:

1. The DMAS bit remains unchanged even if "1" is written. However, if "0" is written to this bit, it is set to "0" (DMA not requested). In order to prevent the DMAS bit from being modified to "0, "1" should be written to the DMAS bit when "1" is written to the DMAE bit. In this way the state of the DMAS bit immediately before being written can be maintained.

Similarly, when writing to the DMAE bit with a read-modify-write instruction, "1" should be written to the DMAS bit in order to maintain a DMA request which is generated during execution.

2. Read the TCRi register to verify whether the DMAi is in an initial state. If the read value is equal to a value which was written to the TCRi register before DMA transfer start, the DMAi is in an initial state. (If a DMA request occurs after writing to the DMAE bit, the value written to the TCRi register is "1".) If the read value is a value in the middle of transfer, the DMAi is not in an initial state.

22.9 Timers

22.9.1 Timer A

22.9.1.1 Timer A (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register and the TAi register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register is modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, if the counter is read at the same time it is reloaded, the value "FFFFh" is read. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

22.9.1.2 Timer A (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the UDF register, the TAZIE, TAOTGL and TAOTGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register, the UDF register, the TAZIE, TAOTGL and TAOTGH bits in the ONSF register and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, "FFFFh" can be read in underflow, while reloading, and "0000h" in overflow. When setting the TAi register to a value during a counter stop, the setting value can be read before a counter starts counting. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

22.9.1.3 Timer A (One-shot Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, the TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

When setting the TAiS bit to "0" (count stop), the followings occur:

- A counter stops counting and a content of reload register is reloaded.
- TAiOUT pin outputs "L".
- After one cycle of the CPU clock, the IR bit in the TAiIC register is set to "1" (interrupt request).

Output in one-shot timer mode synchronizes with a count source internally generated. When an external trigger has been selected, one-cycle delay of a count source as maximum occurs between a trigger input to TAIIN pin and output in one-shot timer mode.

The IR bit is set to "1" when timer operation mode is set with any of the following procedures:

- Select one-shot timer mode after reset.
- Change an operation mode from timer mode to one-shot timer mode.
- Change an operation mode from event counter mode to one-shot timer mode.

To use the Timer Ai interrupt (the IR bit), set the IR bit to "0" after the changes listed above have been made.

When a trigger occurs, while counting, a counter reloads the reload register to continue counting after generating a re-trigger and counting down once. To generate a trigger while counting, generate a second trigger between occurring the previous trigger and operating longer than one cycle of a timer count source.

When the external trigger is selected as count start condition, do not input again the external trigger between 300 ns before the counter reachs "0000h".

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (threephase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

22.9.1.4 Timer A (Pulse Width Modulation Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

The IR bit is set to "1" when setting a timer operation mode with any of the following procedures:

- Select the pulse width modulation mode after reset.
- Change an operation mode from timer mode to pulse width modulation mode.
- Change an operation mode from event counter mode to pulse width modulation mode.

To use the Timer Ai interrupt (the IR bit), set the IR bit to "0" by program after the above listed changes have been made.

When setting TAiS bit to "0" (count stop) during PWM pulse output, the following action occurs:

- Stop counting.
- When TAiOUT pin is output "H", output level is set to "L" and the IR bit is set to "1".
- When TAiOUT pin is output "L", both output level and the IR bit remain unchanged.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (threephase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

22.9.2 Timer B

22.9.2.1 Timer B (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit ⁽¹⁾ in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

NOTE:

1. The TB0S to TB2S bits are the bits 5 to 7 in the TABSR register, the TB3S to TB5S bits are the bits 5 to 7 in the TBSR register.

A value of a counter, while counting, can be read in the TBi register at any time. "FFFFh" is read while reloading. Setting value is read between setting values in the TBi register at count stop and starting a counter.

22.9.2.2 Timer B (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

The counter value can be read out on-the-fly at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always "FFFFh." If the TBi register is read after setting a value in it while not counting but before the counter starts counting, the read value is the one that has been set in the register.

22.9.2.3 Timer B (Pulse Period/pulse Width Measurement Mode)

The timer remains idle after reset. Set the mode, count source, etc. using the TBiMR (i = 0 to 5) register before setting the TBiS bit in the TABSR or TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not. To set the MR3 bit to "0" by writing to the TBiMR register while the TBiS bit = 1 (count starts), be sure to write the same value as previously written to the TM0D0, TM0D1, MR0, MR1, TCK0 and TCK1 bits and a 0 to the MR2 bit.

The IR bit in the TBiIC register goes to "1" (interrupt request), when an effective edge of a measurement pulse is input or timer Bi is overflowed. The factor of interrupt request can be determined by use of the MR3 bit in the TBiMR register within the interrupt routine.

If the source of interrupt cannot be identified by the MR3 bit such as when the measurement pulse input and a timer overflow occur at the same time, use another timer to count the number of times Timer B has overflowed.

To set the MR3 bit to "0" (no overflow), set the TBiMR register with setting the TBiS bit to "1" and counting the next count source after setting the MR3 bit to "1" (overflow).

Use the IR bit in the TBiIC register to detect only overflows. Use the MR3 bit only to determine the interrupt factor within the interrupt routine.

When a count is started and the first effective edge is input, an indeterminate value is transferred to the reload register. At this time, Timer Bi interrupt request is not generated.

A value of the counter is indeterminate at the beginning of a count. The MR3 bit may be set to "1" and Timer Bi interrupt request may be generated between a count start and an effective edge input.

For pulse width measurement, pulse widths are successively measured. Use program to check whether the measurement result is an "H" level width or an "L" level width.

22.10 Thee-Phase Motor Control Timer Function

If there is a possibility that you may write data to TAi-1 register (i = 1, 2, 4) near Timer B2 overflow, read the value of TB2 register, verify that there is sufficient time until Timer B2 overflows, before doing an immediate write to TAi-1 register.

In order to shorten the period from reading TB2 register to writing data to TAi-1 register, ensure that no interrupt will be processed during this period.

If there is not enough time till Timer B2 overflows, only write to TAi-1 register after Timer B2 overflowed.

22.11 Serial I/O

22.11.1 Clock Synchronous Serial I/O Mode

22.11.1.1 Transmission/reception

With an external clock selected, and choosing the $\overline{\text{RTS}}$ function, the output level of the $\overline{\text{RTS}}$ i pin goes to "L" when the data-receivable status becomes ready, which informs the transmission side that the reception has become ready. The output level of the $\overline{\text{RTS}}$ i pin goes to "H" when reception starts. So if the $\overline{\text{RTS}}$ i pin is connected to the $\overline{\text{CTS}}$ i pin on the transmission side, the circuit can transmission and reception data with consistent timing. With the internal clock, the $\overline{\text{RTS}}$ function has no effect.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the $\overline{\text{RTS2}}$ and CLK2 pins go to a high-impedance state.

22.11.1.2 Transmission

When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the transfer clock), the external clock is in the high state; if the transfer clock), the external clock is in the falling edge of the transfer clock), the external clock is in the falling edge of the transfer clock), the external clock is in the low state.

- The TE bit in the UiC1 register = 1 (transmission enabled)
- The TI bit in the UiC1 register = 0 (data present in UiTB register)
- If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin = L

22.11.1.3 Reception

In operating the clock synchronous serial I/O, operating a transmitter generates a shift clock. Fix settings for transmission even when using the device only for reception. Dummy data is output to the outside from the TXDi (i = 0 to 2) pin when receiving data.

When an internal clock is selected, set the TE bit in the UiC1 register to "1" (transmission enabled) and write dummy data to the UiTB register, and the shift clock will thereby be generated. When an external clock is selected, set the TE bit to "1" and write dummy data to the UiTB register, and the shift clock will be generated when the external clock is fed to the CLKi input pin.

When successively receiving data, if all bits of the next receive data are prepared in the UARTi receive register while the RI bit in the UiC1 register = 1 (data present in the UiRB register), an overrun error occurs and the OER bit in the UiRB register is set to "1" (overrun error occurred). In this case, because the content of the UiRB register is indeterminate, a corrective measure must be taken by programs on the transmit and receive sides so that the valid data before the overrun error occurred will be retransmitted. Note that when an overrun error occurred, the IR bit in the SiRIC register does not change state.

To receive data in succession, set dummy data in the lower-order byte of the UiTB register every time reception is made.

When an external clock is selected, the conditions must be met while if the CKPOL bit = 0, the external clock is in the high state; if the CKPOL bit = 1, the external clock is in the low state.

- The RE bit in the UiC1 register = 1 (reception enabled)
- The TE bit in the UiC1 register = 1 (transmission enabled)
- The TI bit in the UiC1 register = 0 (data present in the UiTB register)

22.11.2 Special Modes

22.11.2.1 Special Mode 1 (I²C Mode)

When generating start, stop and restart conditions, set the STSPSEL bit in the UiSMR4 register to "0" (start and stop conditions not output) and wait for more than half cycle of the transfer clock before setting each condition generate bit (STAREQ, RSTAREQ and STPREQ bits) from "0" (clear) to "1" (start).

22.11.2.2 Special Mode 2

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the $\overline{\text{RTS2}}$ and CLK2 pins go to a high-impedance state.

22.11.2.3 Special Mode 4 (SIM Mode)

A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to "1" (transmission complete) and U2ERE bit in the U2C1 register to "1" (error signal output) after reset. Therefore, when using SIM mode, be sure to set the IR bit to "0" (no interrupt request) after setting these bits.

22.11.3 SI/Oi (i = 3 to 6) (1)

The SOUTi default value which is set to the SOUTi pin by the SMi7 in the SiC register bit approximately 10ns may be output when changing the SMi3 bit in the SiC register from "0" (I/O port) to "1" (SOUTi output and CLKi function) while the SMi2 bit in the SiC register to "0" (SOUTi output) and the SMi6 bit is set to "1" (internal clock). And then the SOUTi pin is held high-impedance.

If the level which is output from the SOUTi pin is a problem when changing the SMi3 bit from "0" to "1", set the default value of the SOUTi pin by the SMi7 bit.

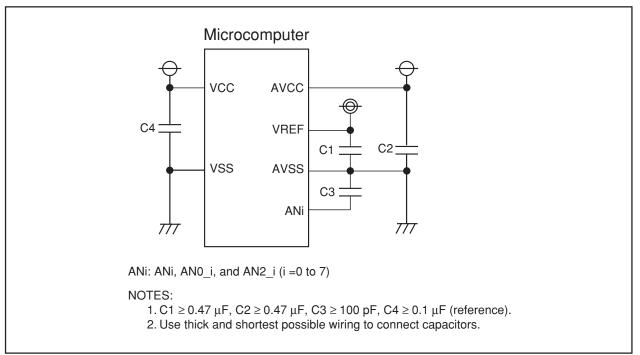
NOTE:

1. SI/O5 and SI/O6 are only in the 128-pin version.

22.12 A/D Converter

Set the ADCON0 (except bit 6), ADCON1 and ADCON2 registers when A/D conversion is stopped (before a trigger occurs).

When the VCUT bit in the ADCON1 register is changed from "0" (VREF not connected) to "1" (VREF connected), start A/D conversion after passing 1 μ s or longer.


To prevent noise-induced device malfunction or latch-up, as well as to reduce conversion errors, insert capacitors between the AVCC, VREF, and analog input pins (ANi (i = 0 to 7), AN0_i, and AN2_i) each and the AVSS pin. Similarly, insert a capacitor between the VCC pin and the VSS pin. Figure 22.4 shows an example connection of each pin.

Make sure the port direction bits for those pins that are used as analog inputs are set to "0" (input mode). Also, if the TGR bit in the ADCON0 register = 1 (external trigger), make sure the port direction bit for the ADTRG pin is set to "0" (input mode).

When using key input interrupt, do not use any of the four AN4 to AN7 pins as analog inputs. (A key input interrupt request is generated when the A/D input voltage goes low.)

The ϕ AD frequency must be 10 MHz or less. Without sample-and-hold function, limit the ϕ AD frequency to 250 kHz or more. With the sample and hold function, limit the ϕ AD frequency to 1 MHz or more.

When changing an A/D operation mode, select analog input pin again in the CH2 to CH0 bits in the ADCON0 register and the SCAN1 to SCAN0 bits in the ADCON1 register.

RENESAS

If the CPU reads the ADi register at the same time the conversion result is stored in the ADi register after completion of A/D conversion, an incorrect value may be stored in the ADi register. This problem occurs when a divide-by-n clock derived from the main clock or a sub clock is selected for CPU clock.

- When operating in one-shot or single-sweep mode Check to see that A/D conversion is completed before reading the target ADi register. (Check the IR bit in the ADIC register to see if A/D conversion is completed.)
- When operating in repeat mode or repeat sweep mode 0 or 1 Use the main clock for CPU clock directly without dividing it.

If A/D conversion is forcibly terminated while in progress by setting the ADST bit in the ADCON0 register to "0" (A/D conversion halted), the conversion result of the A/D converter is indeterminate. The contents of ADi registers irrelevant to A/D conversion may also become indeterminate. If while A/D conversion is underway the ADST bit is set to "0" in a program, ignore the values of all ADi registers.

When setting the ADST bit to "0" in single sweep mode during A/D conversion and A/D conversion is aborted, disable the interrupt before setting the ADST bit to "0".

22.13 CAN Module

22.13.1 Reading COSTR Register

The CAN module on the M16C/6N Group (M16C/6NL, M16C/6NN) updates the status of the C0STR register in a certain period. When the CPU and the CAN module access to the C0STR register at the same time, the CPU has the access priority; the access from the CAN module is disabled. Consequently, when the updating period of the CAN module matches the access period from the CPU, the status of the CAN module cannot be updated. (See **Figure 22.5 When Updating Period of CAN Module Matches Access Period from CPU**.)

Accordingly, be careful about the following points so that the access period from the CPU should not match the updating period of the CAN module:

- (a) There should be a wait time of 3fCAN or longer (see Table 22.3 CAN Module Status Updating Period) before the CPU reads the C0STR register. (See Figure 22.6 With a Wait Time of 3fCAN Before CPU Read.)
- (b) When the CPU polls the C0STR register, the polling period must be 3fCAN or longer. (See Figure 22.7 When Polling Period of CPU is 3fCAN or Longer.)

3fCAN Period = 3 × XIN (Original Oscillation Period) × Division Value of CAN Clock (CCLK)		
(Example 1) Condition XIN 16 MHz CCLK: Divided by 1	3 fCAN period = 3×62.5 ns $\times 1 = 187.5$ ns	
(Example 2) Condition XIN 16 MHz CCLK: Divided by 2	3 fCAN period = 3×62.5 ns $\times 2 = 375$ ns	
(Example 3) Condition XIN 16 MHz CCLK: Divided by 4	3 fCAN period = 3×62.5 ns $\times 4$ = 750 ns	
(Example 4) Condition XIN 16 MHz CCLK: Divided by 8	3 fCAN period = 3×62.5 ns $\times 8 = 1.5 \ \mu$ s	
(Example 5) Condition XIN 16 MHz CCLK: Divided by 16	3 fCAN period = 3×62.5 ns $\times 16 = 3 \mu$ s	

Table 22.3 CAN Module Status Updating Period

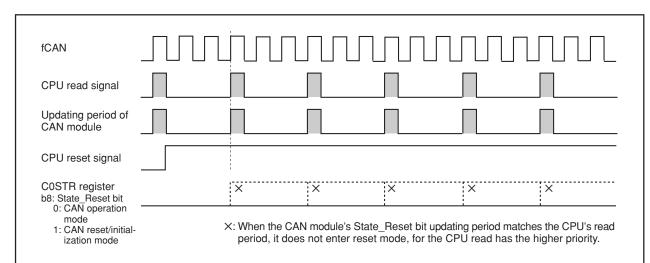


Figure 22.5 When Updating Period of CAN Module Matches Access Period from CPU

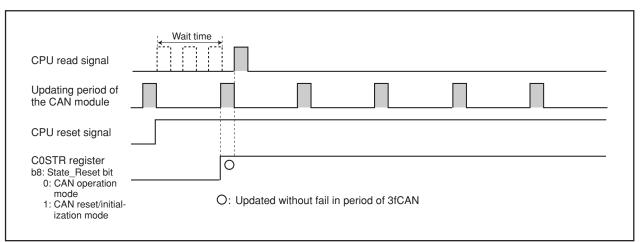
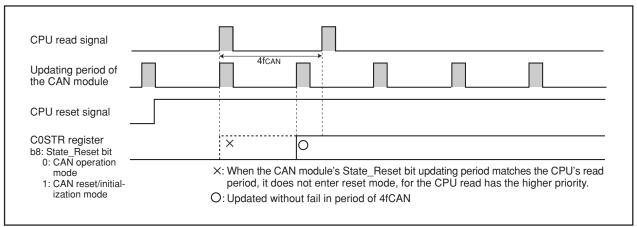



Figure 22.6 With a Wait Time of 3fCAN Before CPU Read

22.13.2 Performing CAN Configuration

If the Reset bit in the COCTLR register is changed from "0" (operation mode) to "1" (reset/initialization mode) in order to place the CAN module from CAN operation mode into CAN reset/initialization mode, always be sure to check that the State_Reset bit in the COSTR register is set to "1" (reset mode). Similarly, if the Reset bit is changed from "1" to "0" in order to place the CAN module from CAN reset/ initialization mode, always be sure to check that the State_Reset bit on order to place the CAN module from CAN reset/ initialization mode into CAN operation mode, always be sure to check that the State_Reset bit is set to "0" in order to place the CAN module from CAN reset/ initialization mode into CAN operation mode, always be sure to check that the State_Reset bit is set to "0" (operation mode).

The procedure is described below.

To place CAN Module from CAN Operation Mode into CAN Reset/Initialization Mode

- Change the Reset bit from "0" to "1".
- Check that the State_Reset bit is set to "1".

To place CAN Module from CAN Reset/Initialization Mode into CAN Operation Mode

- Change the Reset bit from "1" to "0".
- Check that the State_Reset bit is set to "0".

22.13.3 Suggestions to Reduce Power Consumption

When not performing CAN communication, the operation mode of CAN transceiver should be set to "standby mode" or "sleep mode".

When performing CAN communication, the power consumption in CAN transceiver in not performing CAN communication can be substantially reduced by controlling the operation mode pins of CAN transceiver.

Tables 22.4 and 22.5 show recommended pin connections.

	Standby Mode	High-speed Mode	
Rs Pin ⁽¹⁾	"H"	"L"	
Power Consumption in	less than 170 μA	less than 70 mA	
CAN Transceiver (2)			
CAN Communication	impossible	possible	
Connection	M16C/6NL, M16C/6NN CTX0 CRX0 Port (3) "H" output	M16C/6NL, M16C/6NN CTX0 CRX0 Port (3) "L" output	

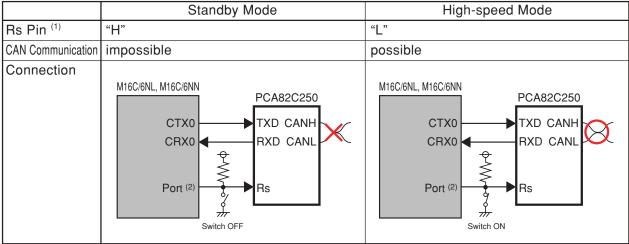
NOTES:

- 1. The pin which controls the operation mode of CAN transceiver.
- 2. In case of Ta = 25 $^{\circ}$ C
- 3. Connect to enabled port to control CAN transceiver.

Table 22.5 Recommended Pin Connections (In case of PCA82C252: Philips product)

	Sleep Mode	Normal Operation Mode	
STB Pin ⁽¹⁾	"L"	"H"	
EN Pin ⁽¹⁾	"L"	"Н"	
Power Consumption in	less than 50 μA	less than 35 mA	
CAN Transceiver (2)			
CAN Communication	impossible	possible	
Connection	M16C/6NL, M16C/6NN CTX0 CTX0 CRX0 Port (3) Port (3) Port (3) CRX0 Port (3) CRX0 Port (3) CRX0	M16C/6NL, M16C/6NN CTX0 CTX0 CRX0 Port (3) Port (3) TXD CANH RXD CANL STB EN "H" output	

NOTES:


- 1. The pin which controls the operation mode of CAN transceiver.
- 2. Ta = 25 °C
- 3. Connect to enabled port to control CAN transceiver.

22.13.4 CAN Transceiver in Boot Mode

When programming the flash memory in boot mode via CAN bus, the operation mode of CAN transceiver should be set to "high-speed mode" or "normal operation mode". If the operation mode is controlled by the microcomputer, CAN transceiver must be set the operation mode to "high-speed mode" or "normal operation mode" before programming the flash memory by changing the switch etc. Tables 22.6 and 22.7 show pin connections of CAN transceiver.

Table 22.6 Pin Connections of CAN Transceiver (In case of PCA82C250: Philips product)

NOTES:

- 1. The pin which controls the operation mode of CAN transceiver.
- 2. Connect to enabled port to control CAN transceiver.

Table 22.7 Pin Connections of	CAN Transceiver (In case of	f PCA82C252: Philips product)

	Sleep Mode	Normal Operation Mode
STB Pin ⁽¹⁾	"L"	"H"
EN Pin ⁽¹⁾	"L"	"H"
CAN Communication	impossible	possible
Connection	M16C/6NL, M16C/6NN CTX0 CTX0 CRX0 Port ⁽²⁾ Fort ⁽²⁾ Switch OFF	M16C/6NL, M16C/6NN CTX0 CTX0 CRX0 Port ⁽²⁾ Port ⁽²⁾ Switch ON PCA82C252 TXD CANH RXD CANL

NOTES:

- 1. The pin which controls the operation mode of CAN transceiver.
- 2. Connect to enabled port to control CAN transceiver.

22.14 Programmable I/O Ports

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the P7_2 to P7_5, P8_0 and P8_1 pins go to a high-impedance state.

Setting the SM32 bit in the S3C register to "1" causes the P9_2 pin to go to a high-impedance state. Setting the SM42 bit in the S4C register to "1" causes the P9_6 pin to go to a high-impedance state ⁽¹⁾. Setting the SM52 bit in the S5C register to "1" causes the P11_2 pin to go to a high-impedance state ⁽²⁾. Setting the SM62 bit in the S6C register to "1" causes the P11_6 pin to go to a high-impedance state ⁽²⁾.

NOTES:

- 1. When using SI/O4, set the SM43 bit in the S4C register to "1" (SOUT4 output, CLK4 function) and the port direction bit corresponding for SOUT4 pin to "0" (input mode).
- 2. The S5C and S6C registers are only in the 128-pin version. When using these registers, set these registers after setting the PU37 bit in the PUR3 registger to "1" (Pins P11 to P14 are usable).

The input threshold voltage of pins differs between programmable I/O ports and peripheral functions. Therefore, if any pin is shared by a programmable I/O port and a peripheral function and the input level at this pin is outside the range of recommended operating conditions VIH and VIL (neither "high" nor "low"), the input level may be determined differently depending on which side—the programmable I/O port or the peripheral function—is currently selected.

When changing the PD14_i bit (i = 0, 1) in the PC14 register from "0" (input port) to "1" (output port), follow the procedures below.

	Setting Procedure	
(1) Set P14_i bit	:MOV.B #000000 <u>01</u> b, PC14	; P14_i bit setting
(2) Change PD14_i bit to "1" by MOV instruction	:MOV.B #00 <u>11</u> 00 <u>01</u> b, PC14	; Change to output port

22.15 Dedicated Input Pin

When dedicated input pin voltage is larger than VCC pin voltage, latch up occurs.

When different power supplied to the system, and input voltage of unused dedicated input pin is larger than voltage of VCC pin, connect dedicated input pin to VCC via resistor (approximately $1k\Omega$).

Figure 22.8 shows the circuit connection.

This note is also applicable when VINPUT exceeds VCC during power-up.

The resistor is not necessary when VCC pin voltage is same or larger than dedicated input pin voltage.

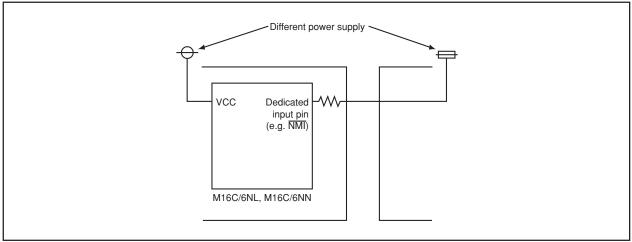


Figure 22.8 Circuit Connection

22.16 Electrical Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers

Flash memory version and mask ROM version may have different characteristics, operating margin, noise tolerated dose, noise width dose in electrical characteristics due to internal ROM, different layout pattern, etc. When switching to the mask ROM version, conduct equivalent tests as system evaluation tests conducted in the flash memory version.

22.17 Mask ROM Version

When using the masked ROM version, write nothing to internal ROM area.

22.18 Flash Memory Version

22.18.1 Functions to Prevent Flash Memory from Rewriting

ID codes are stored in addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFEFh, 0FFFF3h, 0FFFF7h, and 0FFFFBh. If wrong data are written to theses addresses, the flash memory cannot be read or written in standard serial I/O mode and CAN I/O mode.

The ROMCP register is mapped in address 0FFFFh. If wrong data is written to this address, the flash memory cannot be read or written in parallel I/O mode.

In the flash memory version of microcomputer, these addresses are allocated to the vector addresses (H) of fixed vectors.

22.18.2 Stop Mode

When entering stop mode, the following settings are required:

- Set the FMR01 bit to "0" (CPU rewrite mode disabled). Disable DMA transfer before setting the CM10 bit to "1" (stop mode).
- Execute the instruction to set the CM10 bit to "1" (stop mode) and then the JMP.B instruction.

Example program	BSET	0, CM1	; Stop mode
	JMP.B	L1	

L1:

Program after exiting stop mode

22.18.3 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

22.18.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Erase all unlocked blocks
- · Lock bit program software command
- Read lock bit status

22.18.5 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

22.18.6 Program Command

By writing "xx40h" in the first bus cycle and data to the write address in the second bus cycle, an auto program operation (data program and verify) will start. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

22.18.7 Lock Bit Program Command

By writing "xx77h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to "0". The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

22.18.8 Operation Speed

Set the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register to clock frequency of 10 MHz or less before entering CPU rewrite mode (EW0 or EW1 mode). Also, set the PM17 bit in the PM1 register to "1" (with wait state).

22.18.9 Prohibited Instructions

The following instructions cannot be used in EW0 mode because the CPU tries to read data in flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

22.18.10 Interrupt

EW0 Mode

To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.

• The NMI and watchdog timer interrupts are available since the FMR0 and FMR1 registers are forcibly reset when either interrupt request is generated. Allocate the jump addresses for each interrupt service routines to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt request is generated. Execute the rewrite program again after exiting the interrupt routine.

• The address match interrupt is not available since the CPU tries to read data in the flash memory.

EW1 Mode

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during the auto program or auto erase period.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since the FMR0 and FMR1 registers are forcibly reset when the interrupt request is generated. Allocate the jump address for the interrupt service routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI interrupt request is generated. Execute the rewrite program again after exiting the interrupt service routine.

22.18.11 How to Access

To set the FMR01, FMR02 or FMR11 bit to "1", write "1" after first setting the bit to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while an "H" signal is applied to the $\overline{\rm NMI}$ pin.

22.18.12 Rewriting in User ROM Area

EW0 Mode

The supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode or CAN I/O mode.

EW1 Mode

Avoid rewriting any block in which the rewrite control program is stored.

22.18.13 DMA Transfer

In EW1 mode, do not perform a DMA transfer while the FMR00 bit in the FMR0 register is set to "0" (auto programming or auto erasing).

22.19 Flash Memory Programming Using Boot Program

When programming the internal flash memory using boot program, be careful about the pins state and connection as follows.

22.19.1 Programming Using Serial I/O Mode

CTX0 pin : This pin automatically outputs "H" level.

CRX0 pin : Connect to CAN transceiver or connect via resister to VCC (pull-up)

Figure 22.9 shows a pin connection example for programming using serial I/O mode.

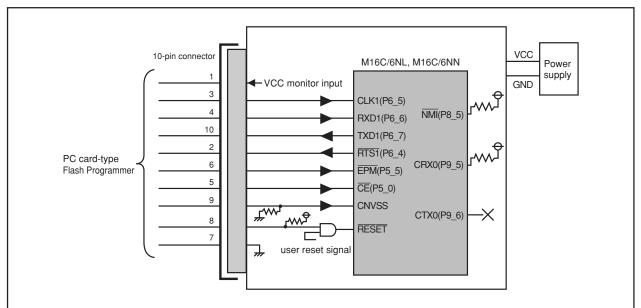


Figure 22.9 Pin Connection for Programming Using Serial I/O Mode

22.19.2 Programming Using CAN I/O Mode

RTS1 pin : This pin automatically outputs "H" and "L" level.

Figure 22.10 shows a pin connection example for programming using CAN I/O mode.

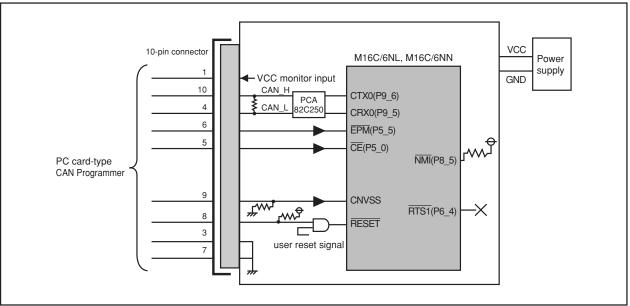


Figure 22.10 Pin Connection for Programming Using CAN I/O Mode

22.20 Noise

Connect a bypass capacitor (approximately 0.1 μ F) across the VCC1 and VSS pins, and VCC2 and VSS pins using the shortest and thicker possible wiring. Figure 22.11 shows the bypass capacitor connection.

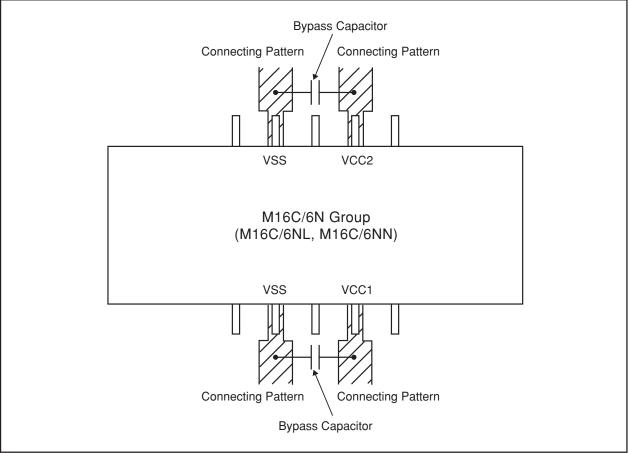
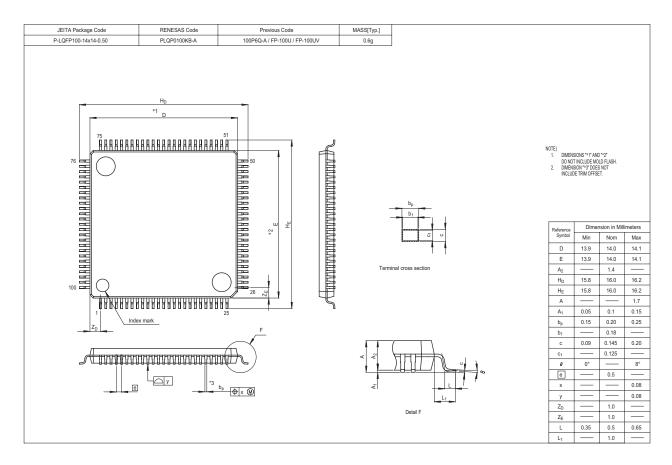
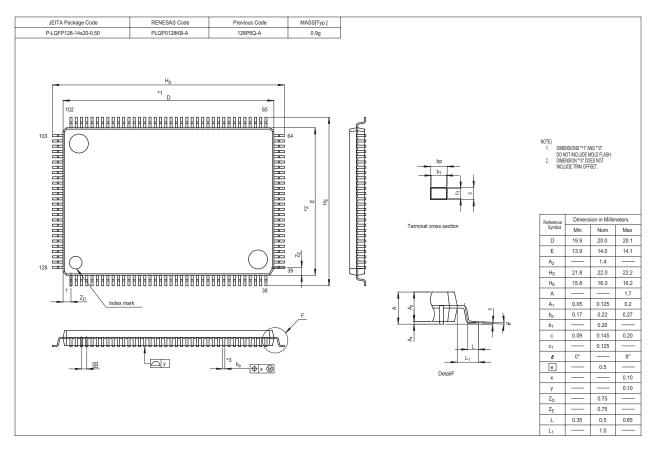




Figure 22.11 Bypass Capacitor Connection

Appendix 1. Package Dimensions

Register Index

Α

AD0 to AD7 180
ADCON0 179,182,184,186,188,190
ADCON1 179,182,184,186,188,190
ADCON2 180
ADIC 61
AIER 75
AIER2

С

C01ERRIC 61 C01WKIC 61 C0AFS 209 C0CONR 208 C0CTLR 204 C0GMR 202
C0AFS 209 C0CONR 208 C0CTLR 204 C0GMR 202
COCONR 208 COCTLR 204 COGMR 202
COCTLR
C0GMR 202
C0ICR
C0IDR 207
C0LMAR 202
C0LMBR
COMCTL0 to COMCTL15 203
CORECIC 61
C0RECR 209
C0SSTR
C0STR
C0TECR
C0TRMIC 61
C0TSR
C1CTLR 205
CAN0 Slot 0 to 15
: Time Stamp 200,201
: Data Field 200,201
: Message Box 200,201
CCLKR 37
CM0
CM1
CM2
CPSRF 93,107
CRCD 196
CRCIN 196

D

DA0, DA1 195
DACON 195
DAR0, DAR1 82
DM0CON, DM1CON 81
DM0IC, CM1IC 61
DM0SL 80
DM1SL 81
DTT 117

F

IFSR1 71	
IFSR2)
INTOIC to INT8IC)
INVC0115	;
INVC1116	;

Κ

KUPIC 61

0

Ρ

P0 to P13	231
PC14	231
PCLKR	36
PCR	233
PD0 to PD13	230
PLC0	38
PM0	28
PM1	29
PM2	37
PRCR	55
PUR0 to PUR2	232
PUR3	233

R

RMAD0 to RMAD3 7	5
ROMCP 23	8

S

Т

	1
TA0	
TA0IC	61
TA0MR	91,94,96,101,103
TA1	
TA11	
TA1IC	61
TA1MR	91,94,96,101,103,121
TA2	
TA21	
TA2IC	
TA2MR	. 91,94,96,98,101,103,121
ТАЗ	
TA3IC	
TA3MR	91,94,96,98,101,103
TA4	
TA41	
TA4IC	
TA4MR	. 91,94,96,98,101,103,121
TABSR	
ТВ0	106
TB0IC	
TB0MR	106,108,109,111
TB1	106
TB1IC	
TB1MR	106,108,109,111
TB2	
TB2IC	
TB2MR	106,108,109,111,121
TB2SC	
ТВЗ	106
TB3IC	
TB3MR	106,108,109,111
	106
TB4IC	
TB4MR	106,108,109,111
ТВ5	106
	61
TB5MR	106,108,109,111
TBSR	107
TCR0	
TCR1	
TRGSR	
	-

U

U0BCNIC to U2BCNIC	61
U0BRG to U2BRG	128
U0C0 to U2C0	129

U0C1 to U2C1 130
U0MR to U2MR 129
U0RB to U2RB 128
U0SMR to U2SMR 131
U0SMR2 to U2SMR2 132
U0SMR3 to U2SMR3 132
U0SMR4 to U2SMR4 133
U0TB to U2TB 128
UCON 131
UDF 92

W

WDC	77
WDTS	77

REVISION HISTORY

M16C/6N Group (M16C/6NL, M16C/6NN) Hardware Manual

Pov	Date -	Description		
Rev.		Page	Summary	
1.00	Sep. 30, 2004	_	First edition issued	
1.01	Nov. 01, 2004	-	Revised edition issued	
			* Revised parts and revised contents are as follows (except for expressional change).	
		267	Table 21.2 Recommended Operating Conditions (1)	
			• IOH(peak): Unit is revised from "V" to "mA".	
		268	Table 21.3 Recommended Operating Conditions (2)	
			• NOTE 3: "VCC = 3.0 ± 0.3 V" is revised to "VCC = 3.3 ± 0.3 V".	
		288	22.9.1.2 Timer A (Event Counter Mode) is revised.	
1.02	Jul. 01, 2005	_	Revised edition issued	
			* Revised parts and revised contents are as follows (except for expressional change).	
		5	Table 1.3 Product List is revised.	
		13	FIgure 4.1 SFR Information (1): The value of After Reset in CM2 Register is revised.	
		19	Figure 4.7 SFR Information (7): NOTE 1 is revised.	
		35	Figure 7.4 CM2 Register: The value of After Reset is revised.	
		51	Figure 7.13 State Transition in Normal Operation Mode: NOTE 7 is revised.	
		74	9.10 Address Match Interrupt: After of 13th line	
			"Note that when using the external bus in 8-bit width, no address match interrupts	
			can be used for external areas." is deleted.	
		172	Figure 14.37 (upper) SiC Register: NOTE 4 is revised.	
		203	Figure 18.6 C0MCTLj Registers	
			RemActive bit: Function is revised.	
			RspLock bit: Bit Name is revised.	
			NOTE 2 is revised.	
		204	Figure 18.7 C0CTLR Registers (upper)	
			 LoopBack bit: The expression of Function is revised. 	
			BasicCAN bit: The expression of Function is revised.	
			Figure 18.7 C0CTLR Registers (lower)	
			• TSPreScale bit: Bit Symbol is revised. ("Bit1, Bit0" is deleted.)	
			 TSReset bit: The expression of Function is revised. 	
			RetBusOff bit: The expression of Function is revised.	
			• RXOnly bit: The expression of Function is revised.	
		206	Figure 18.9 C0STR Registers (upper): NOTE 1 is deleted.	
			Figure 18.9 C0STR Registers (lower)	
			State_LoopBack bit: The expression of Function is revised.	
			State_BasicCAN bit: The expression of Function is revised.	
		209	Figure 18.12 CORECR Register, COTECR Register, COTSR Register and COAFS Register	
			CORECR Register: NOTE 2 is deleted.	
			COTECR Register: NOTE 1 is deleted.	
			COTSR Register: NOTE 1 is deleted.	
		220	18.15.1 Reception (1): "(refer to 18.15.2 Transmission)" is deleted.	
		225	Figure 19.1 I/O Ports (1): "P7_0" in 4th figure is deleted.	
		227	Figure 19.3 I/O Ports (3): "P7_0" is added to middle figure.	

REVISION HISTORY

M16C/6N Group (M16C/6NL, M16C/6NN) Hardware Manual

Davi	Dete		Description
Rev.	Date	Page	Summary
1.02	Jul. 01, 2005	229	Figure 19.6 I/O Pins: NOTE 1 is deleted.
		269	Table 21.4 Electrical Characteristics (1)
			• Measuring Condition of Vol is revised from "Lol = -200μ A" to "Lol = 200μ A".
		270	Table 21.5 Electrical Characteristics (2): Mask ROM (5th item)
			 "f(XCIN)" is changed to "(f(BCLK)).
		271	Table 21.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is deleted.
		304	22.14 Programmable I/O Ports: last 1 to 2 lines
			 (1) Setting Procedure is revised from "#0001000b" to "#00000001b".
			• (2) Setting Procedure is revised from "#00 <u>01</u> 00 <u>11</u> b" to "#00 <u>11</u> 00 <u>01</u> b".
1			
1			

M16C/6N Group (M16C/6NL, M16C/6NN) Hardware Manual

Publication Data : Rev.1.00 Sep 30, 2004 Rev.1.02 Jul 01, 2005 Published by : Sales Strategic Planning Div. Renesas Technology Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

M16C/6N Group (M16C/6NL, M16C/6NN) Hardware Manual

Renesas Technology Corp. 2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan